Abstract: | Analysis of the isobutane chemical ionization mass spectra of hexenols, cyclohexenols and various syn/anti pairs of bicyclic and tricyclic homoallylic alcohols shows that: (i) the spectra of the allylic alcohols are dominated by [M + H – H2O]+ and [M + C4H9–H2O]+ ions and contain traces of [M + H]+ ions; (ii) [M + H]+ ions are prominent in the spectra of acyclic and certain cyclic homoallylic alcohols; and (iii) [M + H]+ ions dominate the spectra of other acyclic unsaturated alcohols. The [M + H]+ ions may result from either: (a) protonation of the hydroxyl group, followed by a very rapid intramolecular proton transfer from the protonated hydroxyl group to the carbon–carbon double bond or internal solvation of the protonated hydroxyl group by the carbon–carbon double bond; and/or (b) direct protonation of the carbon–carbon double bond with significant internal solvation of the resulting carbocation by the hydroxyl group, which may lead to carbon–oxygen bond formation to give a protonated cyclic ether. The consequences of placing various geometric constraints on the possible intramolecular interactions between the hydroxyl group and the carbon–carbon double bond in unsaturated alcohols are explored. |