首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Approximation of enzyme kinetics for high enzyme concentration by a first order perturbation approach
Authors:Sebastian Kram  " target="_blank">Maximilian Schäfer  Rudolf Rabenstein
Institution:1.Friedrich-Alexander-Universit?t Erlangen-Nürnberg (FAU),Erlangen,Germany
Abstract:This contribution presents an approximate solution of the enzyme kinetics problem for the case of excess of an enzyme over the substrate. A first order perturbation approach is adopted where the perturbation parameter is the relation of the substrate concentration to the total amount of enzyme. As a generalization over existing solutions for the same problem, the presented approximation allows for nonzero initial conditions for the substrate and the enzyme concentrations as well as for nonzero initial complex concentration. Nevertheless, the approximate solution is obtained in analytical form involving only elementary functions like exponentials and logarithms. The presentation discusses all steps of the procedure, starting from amplitude and time scaling for a non-dimensional representation and for the identification of the perturbation parameter. Suitable time constants lead to the short term and long term behaviour, also known as the inner and outer solution. Special attention is paid to the matching process by the definition of a suitable intermediate layer. The results are presented in concise form as a summary of the required calculations. An extended example compares the zero order and first order perturbation approximations for the short term and long term solution as well as the uniform solution. A comparison to the numerical solution of the initial set of nonlinear ordinary differential equations demonstrates the achievable accuracy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号