首页 | 本学科首页   官方微博 | 高级检索  
     

基于径向基函数神经网络的高光谱遥感图像分类
引用本文:谭琨,杜培军. 基于径向基函数神经网络的高光谱遥感图像分类[J]. 光谱学与光谱分析, 2008, 28(9): 2009-2013. DOI: 10.3964/j.issn.1000-0593(2008)09-2009-05
作者姓名:谭琨  杜培军
作者单位:中国矿业大学地理信息与遥感科学系,江苏,徐州,221008;中国矿业大学地理信息与遥感科学系,江苏,徐州,221008
基金项目:国家自然科学基金,国家高技术研究发展计划(863计划),高等学校博士学科点专项科研项目
摘    要:
从径向基函数神经网络的理论出发,针对高光谱数据的特点,设计了有效的特征提取模型,再与径向基函数神经网络的输入层连接,建立了一个新的径向基函数神经网络的高光谱遥感影像分类模型,并用国产OMISII传感器获得的64波段数据进行试验。首先进行了最小噪声分离变换,提取了1~20个分量的数据,使用提取后的数据(20维)、提取后数据的纹理变换(20维)和主成分分析的前(20维),组成了60维向量数据进行分类处理,这种分类器结构简单、容易训练、收敛速度快,其分类精度达到69.27%,高于BP神经网络分类算法(51.20%)以及常用的最小距离分类(MDC)算法(40.88%)。通过对结果和过程进行分析,实验证明径向基函数神经网络在高光谱遥感分类中具有较好的适用性。

关 键 词:高光谱遥感图像  径向基函数神经网络  分类
收稿时间:2007-05-18

Hyperspectral Remote Sensing Image Classification Based on Radical Basis Function Neural Network
TAN Kun,DU Pei-jun. Hyperspectral Remote Sensing Image Classification Based on Radical Basis Function Neural Network[J]. Spectroscopy and Spectral Analysis, 2008, 28(9): 2009-2013. DOI: 10.3964/j.issn.1000-0593(2008)09-2009-05
Authors:TAN Kun  DU Pei-jun
Affiliation:Department of Remote Sensing and Geographical Information Science, China University of Mining and Technology, Xuzhou 221008, China
Abstract:
Based on the radial basis function neural network (RBFNN) theory and the specialty of hyperspectral remote sensing data, the effective feature extraction model was designed, and those extracted features were connected to the input layer of RBFNN, finally the classifier based on radial basis function neural network was constructed. The hyperspectral image with 64 bands of OMIS Ⅱ made by Chinese was experimented, and the case study area was zhongguancun in Beijing. Minimum noise fraction (MNF) was conducted, and the former 20 components were extracted for further processing. The original data (20 dimension) of extraction by MNF, the texture transformation data (20 dimension) extracted from the former 20 components after MNF, and the principal component analysis data (20 dimension) of extraction were combined to 60 dimension. For classification by RBFNN, the sizes of training samples were less than 6.13% of the whole image. That classifier has a simple structure and fast convergence capacity, and can be easily trained. The classification precision of radial basis function neural network classifier is up to 69.27% in contrast with the 51.20% of back propagation neural network (BPNN) and 40.88% of traditional minimum distance classification (MDC), so RBFNN classifier performs better than the other three classifiers. It proves that RBFNN is of validity in hyperspectral remote sensing classification.
Keywords:Hyperspectral remote sensing image  Radial basis function neural network(RBFNN)  Classification
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号