首页 | 本学科首页   官方微博 | 高级检索  
     


The role of low-coordinate oxygen on Co3O4(110) in catalytic CO oxidation
Authors:Jiang De-en  Dai Sheng
Affiliation:Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. jiangd@ornl.gov
Abstract:
A complete catalytic cycle for carbon monoxide (CO) oxidation to carbon dioxide (CO(2)) by molecular oxygen on the Co(3)O(4)(110) surface was obtained by density functional theory plus the on-site Coulomb repulsion (DFT + U). Previously observed high activity of Co(3)O(4) to catalytically oxidize CO at very low temperatures is explained by a unique twofold-coordinate oxygen site on Co(3)O(4)(110). The CO molecule extracts this oxygen with a computed barrier of 27 kJ/mol. The extraction leads to CO(2) formation and an oxygen vacancy on Co(3)O(4)(110). Then, the O(2) molecule dissociates without a barrier between two neighboring oxygen vacancies (which are shown to have high surface mobility), thereby replenishing the twofold-coordinate oxygen sites on the surface and enabling the catalytic cycle. In contrast, extracting the threefold-coordinate oxygen site on Co(3)O(4)(110) has a higher barrier. Our work furnishes a molecular-level mechanism of Co(3)O(4)'s catalytic power, which may help understand previous experimental results and oxidation catalysis by transition metal oxides.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号