首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A geometrical theory of spin motion
Authors:Leopold Halpern
Institution:(1) Department of Physics, Florida State University, 32306 Tallahassee, Florida;(2) Instituut voor theoretische Physica, Universiteit. van Amsterdam, Amsterdam, The Netherlands
Abstract:A discussion of the fundamental interrelation of geometry and physical laws with Lie groups leads to a reformulation and heuristic modification of the principle of inertia and the principle of equivalence, which is based on the simple de Sitter group instead of the Poincaré group. The resulting law of motion allows a unified formulation for structureless and spinning test particles. A metrical theory of gravitation is constructed with the modified principle, which is structured after the geometry of the manifold of the de Sitter group. The theory is equivalent to a particular Kaluza-Klein theory in ten dimensions with the Lorentz group as gauge group. A restricted version of this theory excludes torsion. It is shown by a reformulation of the energy momentum complex that this version is equivalent to general relativity with a cosmologic term quadratic in the curvature tensor and in which the existence of spinning particle fields is inherent from first principles. The equations of the general theory with torsion are presented and it is shown in a special case how the boundary conditions for the torsion degree of freedom have to be chosen such as to treat orbital and spin angular momenta on an equal footing. The possibility of verification of the resulting anomalous spin-spin interaction is mentioned and a model imposed by the group topology ofSO(3,2) is outlined in which the unexplained discrepancy between the magnitude of the discrete valued coupling constants and the gravitational constant in Kaluza-Klein theories is resolved by the identification of identical fermions as one orbit. The mathematical structure can be adapted to larger groups to include other degrees of freedom.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号