首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental and theoretical studies of acridine orange as corrosion inhibitor for copper protection in acidic media
Authors:Ece Altunbaş Şahin
Institution:Bingöl University, Genç Vocational School, Property Protection and Security Department, Civil Defense and Firefighting Program, 12000, Bingöl, Turkey
Abstract:The corrosion process commonly limits the use of copper in practical applications. The use of corrosion inhibitors is one of the effective methods to reduce the corrosion rate of copper. In this research, the inhibition effect of acridine orange (3,6-bis(dimethylamine)acridine) (AcO) for the protection of copper in 0.5 ?M ?H2SO4 solution was studied. For this aim, the change of open circuit potential with exposure time (Eocp-t), electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), anodic and cathodic potentiodynamic polarization measurements (PP) and chronoamperometry (CA) techniques were used. Some quantum chemical parameters (EHOMO, ELUMO and dipole moment) were calculated and discussed. The AcO film formed over the copper surface was examined by SEM, EDX, AFM and contact angle measurements. The electrochemical data showed that AcO is an effective corrosion inhibitor even at low concentrations (ranging between 99.1% and %99.4 ?at concentrations from 0.01 ?mM to 1 ?mM). The corrosion rate of copper decreases in the presence of the inhibitor by reducing both anodic and cathodic rates, which is depended on its concentration. This compound behaves as mixed-type corrosion inhibitors with predominantly cathodic type. Its adsorption on the copper surface obeys Langmuir adsorption isotherm. The value of adsorption equilibrium constant (Kads) and the standard free energy of adsorption were ΔGads 1.298 x 103 ?M?1 and -27.71 ?kJ/mol in the case of 0.5 ?M ?H2SO4 solution containing 1.0 ?mM AcO, which shows the adsorption is high and spontaneous. The adsorbed inhibitor film over the metal increase contact angle of the surface, which suggests the more hydrophobic properties of the surface are increasing coming from the orientation of hydrophobic sites to the electrolyte. The zero charge potential (Epzc) studies showed that the surface charge of the metal is positive in the corrosive media containing the inhibitor. Quantum chemical calculations showed that the binding of inhibitor molecules to the metal surface takes place through N atoms of the inhibitor.
Keywords:Acridine orange  Organic inhibitor  Corrosion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号