首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Co-crystallization of glycine anhydride with the hydroxybenzoic acids: Controlled formation of dimers via synthons cooperation and structural characterization
Authors:Lei Wang  Lei Zhao  WeiMing Liu  RuiXin Chen  YuanXiang Gu  Yu Yang
Institution:1. Key Laboratory of Eco-Chemical Engineering, Ministry of Education; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
Abstract:The results of crystallographic analyses on 1:1 and 1:4 well-defined co-crystals formed between glycine anhydride and each of 4-hydroxybenzoic acid and 3,5-dihydroxybenzoic acid are described. Neutral molecules are connected via heteromeric O-H??O and N-H??O contacts leading to different packing arrangements of supramolecular chains. On the basis of the molecular structures of glycine anhydride and carboxylic acid guests, the hydrogen bonds are arranged to give centrosymmetric synthons V and VII which are noteworthy for their robustness. Hydrogen-bond interactions between glycine anhydride and aromatic acid provide sufficient driving force to direct molecular recognition and crystal packing. Utilization of the orientation of functional groups of the building blocks, the acidity, and weak interactions provides a route for the creation of novel supramolecular architectures in the crystal lattice. Both two co-crystals contain the expected hydrogen-bonded motifs, and there has been no proton transfer from either of the two carboxylic acids to the aza compound moiety. This demonstrates that glycine anhydride is very capable of affecting the construction of binary co-crystals in a predictable and rationale manner. It is noted that synthons VIII and IX are fairly large, but the real challenge in crystal engineering is to find a big enough synthon that occurs often enough. Thermal stability of these compounds has been investigated by thermogravimetric analysis (TGA) of mass loss.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号