首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Time-resolved spectroscopic studies of B(12) coenzymes: a comparison of the primary photolysis mechanism in methyl-, ethyl-, n-propyl-, and 5'-deoxyadenosylcobalamin.
Authors:Allwyn G Cole  Laurie M Yoder  Joseph J Shiang  Neil A Anderson  Larry A Walker  Mark M Banaszak Holl  Roseanne J Sension
Institution:Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
Abstract:An ultrafast transient absorption study of the primary photolysis of ethyl- and n-propylcobalamin in water is presented. Data have been obtained for two distinct excitation wavelengths, 400 nm at the edge of the UV gamma-band absorption, and 520 nm in the strong visible alphabeta-band absorption. These data are compared with results reported earlier for the B(12) coenzymes, methyl- and adenosylcobalamin. The data obtained for ethylcobalamin and n-propylcobalamin following excitation at 400 nm demonstrate the formation of one major photoproduct on a picosecond time scale. This photoproduct is spectroscopically identifiable as a cob(II)alamin species. Excitation of methyl-, ethyl-, and n-propylcobalamin at 520 nm in the low-lying alphabeta absorption band results in bond homolysis proceeding via a bound cob(III)alamin MLCT state. For all of the cobalamins studied here competition between geminate recombination of caged radical pairs and cage escape occurs on a time scale of 500 to 700 ps. The rate constants for geminate recombination in aqueous solution fall within a factor of 2 between 0.76 and 1.4 ns(-1). Intrinsic cage escape occurs on time scales ranging from
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号