首页 | 本学科首页   官方微博 | 高级检索  
     


Raman investigation of silicon nanocrystals: quantum confinement and laser‐induced thermal effects
Authors:Y. Duan  J. F. Kong  W. Z. Shen
Abstract:We present a detailed experimental and theoretical Raman investigation of quantum confinement and laser‐induced local thermal effects on hydrogenated nanocrystalline silicon with different nanocrystal sizes (3.6–6.2 nm). The local temperature was monitored by measuring the Stokes/anti‐Stokes peak ratio with the laser power density range from ~120 to 960 kW/cm2. In combination with the three‐dimensional phonon confinement model and the anharmonic effect, which incorporates the three‐phonon and four‐phonon decay processes, we revealed an asymmetrical decay process with wavenumbers ~170 and 350 cm–1, an increasing anharmonic effect with nanocrystal sizes, and a shortening lifetime with enhanced temperature and decreasing nanocrystal dimension. Furthermore, we demonstrated experimentally that for Si nanocrystals smaller than 6 nm, the quantum confinement effect is dominant for the peak shift and line broadening. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:silicon nanocrystals  thermal effect  quantum size effect  Raman spectra
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号