首页 | 本学科首页   官方微博 | 高级检索  
     


Optical magnetometer with submicron spatial resolution based on Rb vapors
Authors:G. T. Hakhumyan
Affiliation:1.Institute for Physical Research,NAS of Armenia,Ashtarak,Armenia;2.Laboratoire Interdisciplinaire Carnot de Bourgogne,Universite de Bourgogne,Dijon, Cedex,France
Abstract:
It is shown experimentally that use of fluorescence and transmission spectra obtained from nanocells with the thickness of column of rubidium atomic vapor L = λ/2 and L = λ, respectively (λ = 794 nm is the wavelength of laser radiation close to resonance with D 1-line transition of Rb atoms), by means of a narrowband diode laser allows spectral separation and study of variations of probabilities of atomic transitions between ground and excited states of hfs of D 1 lines of 85Rb and 87Rb atoms in the range of magnetic fields from 10 to 5000 G. Small thickness of atomic vapor column (∼390 nm and ∼794 nm) allows applying permanent magnets simplifying essentially creation of strong magnetic fields. Advantages of this technique are discussed as compared with the technique of saturated absorption. The obtained results show that a nanocell with submicrom thickness of vapor column may serve as a basis for designing a magnetometer with submicron local spatial resolution which is important in case of measuring strongly inhomogeneous magnetic fields. Experimental data are in good agreement with the theoretical results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号