首页 | 本学科首页   官方微博 | 高级检索  
     

基于高光谱反射率的喀斯特地区土壤重金属锌元素含量反演
作者姓名:王金凤  王世杰  白晓永  刘方  路茜  田诗琪  王明明
作者单位:贵州大学资源与环境工程学院,贵州贵阳550001;中国科学院地球化学研究所环境地球化学国家重点实验室,贵州贵阳550001;六盘水师范学院旅游与历史文化学院,贵州六盘水553004;中国科学院地球化学研究所环境地球化学国家重点实验室,贵州贵阳550001;中国科学院普定喀斯特生态系统观测研究站,贵州普定562100;贵州大学资源与环境工程学院,贵州贵阳550001;贵州大学资源与环境工程学院,贵州贵阳550001;中国科学院地球化学研究所环境地球化学国家重点实验室,贵州贵阳550001;中国科学院地球化学研究所环境地球化学国家重点实验室,贵州贵阳550001;贵州师范大学地理与环境科学学院,贵州贵阳550001;中国科学院地球化学研究所环境地球化学国家重点实验室,贵州贵阳550001
基金项目:国家重点研发计划项目(2016YFC0502102,2016YFC0502300),“西部之光”人才培养计划(A类),中国科学院科技服务网络计划项目(KFJ-STS-ZDTP-036),国际合作局国际伙伴计划项目(132852KYSB20170029,2014-3),贵州省高层次创新型人才培养计划“十”层次人才项目(黔科合平台人才[2016]5648),喀斯特科学研究中心联合基金项目(U1612441),国家自然科学基金项目(41571130074,41571130042),贵州省科技计划项目(2017-2966)资助
摘    要:针对传统土壤重金属锌元素含量测定效率低下和喀斯特地区山高坡陡土壤样品采集难度大,亟需先进手段获取土壤重金属锌元素含量的要求,以喀斯特流域为研究区,利用电感耦合等离子质谱测定土壤样品的锌元素含量和分光光广度计采集土壤光谱数据。将所测定的原始光谱,经过连续统去除、一阶、二阶微分、倒数、倒数对数、倒数对数一阶、倒数对数二阶微分7种数学变换,基于高光谱吸收重金属元素的特征吸收带初步判断光谱特征变量,利用相关分析进一步筛选特征变量,运用逐步回归最终确定有效建模光谱变量。采用非线性和线性算法,揭示光谱敏感波段反射率与重金锌元素含量之间的映射关系,进行土壤重金属含量估测。结果表明:基于耦合的光谱特征变量甄选方式,锌元素的特征波段580,810,1 410,1 910,2 160,2 260,2 270,2 350,2 430 nm与铁氧化物、有机质、粘土矿物吸收带关联,表明一定程度上捕捉到喀斯特地区土壤重金属锌元素的光谱吸收特性;运用随机森林、支持向量机、偏最小二乘3种算法进行元素含量与光谱变量建模后,采用决定系数和均方根误差评价模型精度。从光谱变换形式和模型性能二个维度综合判断,基于二阶微分变换的随机森林算法准确度最高,为最佳估算模型。通过高光谱反射率估测重金属锌元素含量,实现了喀斯特地区土壤重金属锌元素含量的高效快速反演,为喀斯特地区重金属元素含量动态监测提供了可靠的技术支撑。

关 键 词:土壤重金属锌  光谱反射率  特征波段
收稿时间:2018-10-24
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号