首页 | 本学科首页   官方微博 | 高级检索  
     


Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios
Authors:D. A. Long   M. Okumura   C. E. Miller  J. T. Hodges
Affiliation:(1) Process Measurements Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA;(2) Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul. Grudziadzka 5/7, 87-100 Toruń, Poland;
Abstract:
Carbon dioxide (CO2) isotopic ratios on samples of pure CO2 were measured in the 1.6 μm wavelength region using the frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) technique. We present CO2 absorption spectra with peak signal-to-noise ratios as high as 28,000:1. Measured single-spectrum signal-to-noise ratios were as high as 8900:1, 10,000:1, and 1700:1 for 13C/12C, 18O/16O, and 17O/16O, respectively. In addition, we demonstrate the importance of utilizing the Galatry line profile in the spectrum analysis. The use of the Voigt line profile, which neglects the observed collisional narrowing, leads to large systematic errors which are transition-dependent and vary with temperature and pressure. While the relatively low intensities of CO2 transitions near λ=1.6 μm make this spectral region non-optimal, the sensitivity and stability of FS-CRDS enabled measurement precision of pure CO2 samples which are comparable to those of other optical techniques which operate at far more propitious wavelengths. These results indicate that a FS-CRDS spectrometer designed to probe CO2 bands near wavelengths of 2.0 μm or 4.3 μm could achieve significantly improved precision over the present instrument and likely be competitive with mass spectrometric methods.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号