首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of built-in electric field on donor binding energy in InGaN/ZnSnN2 quantum well structures
Authors:Hasan Yıldırım
Institution:Department of Occupational Health and Safety, Faculty of Health Sciences, Karabuk University, Karabuk 78050, Turkey
Abstract:InxGa1?xN/ZnSnN2 quantum well structures are studied in terms of a binding energy of a donor atom. 1s and 2p± impurity states are considered. The Schrödinger's and Poisson's equations are solved self-consistently. A hydrogenic type wave function to represent each impurity state is assumed. The calculations include band-bending in the potential energy profile introduced by the built-in electric field existing along the structures. The binding energy and the energy of the transition between the impurity states are represented as a function of the quantum well width, the donor position, and the indium concentration. An external magnetic field up to 10 T is included into the calculations to compute the Zeeman splitting. The maximum value of the transition energy is around 30 meV (nearly 7.3 THz) which occurs in a 15-Å In0.3Ga0.7N/ZnSnN2 quantum well. Being strong, the built-in electric field makes the transition energy drop quickly with the decreasing well width. For the same reason, the energy curves are found to be highly asymmetric function of the donor position around the well center. Compared to the bulk value, the transition energy in the quantum well structures enhances nearly two-fold.
Keywords:GaN  Impurity  Donor  Binding energy  Quantum well
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号