首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stevioside Activates AMPK to Suppress Inflammation in Macrophages and Protects Mice from LPS-Induced Lethal Shock
Authors:Fuyao Wei  Hong Zhu  Na Li  Chunlei Yu  Zhenbo Song  Shuyue Wang  Ying Sun  Lihua Zheng  Guannan Wang  Yanxin Huang  Yongli Bao  Luguo Sun
Institution:1.National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China; (F.W.); (H.Z.); (N.L.); (C.Y.); (Z.S.); (S.W.); (Y.S.); (Y.H.); (Y.B.);2.Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; (L.Z.); (G.W.)
Abstract:Stevioside, a diterpenoid glycoside, is widely used as a natural sweetener; meanwhile, it has been proven to possess various pharmacological properties as well. However, until now there were no comprehensive evaluations focused on the anti-inflammatory activity of stevioside. Thus, the anti-inflammatory activities of stevioside, both in macrophages (RAW 264.7 cells, THP-1 cells, and mouse peritoneal macrophages) and in mice, were extensively investigated for the potential application of stevioside as a novel anti-inflammatory agent. The results showed that stevioside was capable of down-regulating lipopolysaccharide (LPS)-induced expression and production of pro-inflammatory cytokines and mediators in macrophages from different sources, such as IL-6, TNF-α, IL-1β, iNOS/NO, COX2, and HMGB1, whereas it up-regulated the anti-inflammatory cytokines IL-10 and TGF-β1. Further investigation showed that stevioside could activate the AMPK -mediated inhibition of IRF5 and NF-κB pathways. Similarly, in mice with LPS-induced lethal shock, stevioside inhibited release of pro-inflammatory factors, enhanced production of IL-10, and increased the survival rate of mice. More importantly, stevioside was also shown to activate AMPK in the periphery blood mononuclear cells of mice. Together, these results indicated that stevioside could significantly attenuate LPS-induced inflammatory responses both in vitro and in vivo through regulating several signaling pathways. These findings further strengthened the evidence that stevioside may be developed into a therapeutic agent against inflammatory diseases.
Keywords:stevioside  anti-inflammation  AMPK  IRF5  NF-κ  B  lethal shock
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号