首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor
Institution:1. Institute of Sound and Vibration Research, University of Southampton, Southampton, UK;2. Ascend Technologies Ltd, Eastleigh, UK;1. Univ. Grenoble Alpes, LRP, F-38000 Grenoble, France;2. CNRS, LRP, F-38000 Grenoble, France;3. Univ. Grenoble Alpes, LEPMI, F-38000 Grenoble, France;4. CNRS, LEPMI, F-38000 Grenoble, France;5. Université de Savoie, Savoie Technolac, 73376 Le Bourget du Lac Cedex, France;1. Brunel Innovation Centre, Granta Park, Great Abington, Cambridge CB21 6AL, UK;2. Brunel University, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK;1. The Functional Materials Applied Research Group, Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, United Kingdom;2. Grupo de Nuevos Desarrollos Tecnológicos en Electroquímica: Sonoelectroquímica y Bioelectroquímica, Departamento de Química Física e Instituto Universitario de Electroquímica, Universidad de Alicante, Ap. Correos 99, 03080 Alicante, Spain;3. Grupo de Fotoquímica y Electroquímica de Semiconductores, Departamento de Química Física e Instituto Universitario de Electroquímica, Universidad de Alicante, Ap. Correos 99, 03080 Alicante, Spain
Abstract:We investigate the acoustic wave propagation in bubbly liquid inside a pilot sonochemical reactor which aims to produce antibacterial medical textile fabrics by coating the textile with ZnO or CuO nanoparticles. Computational models on acoustic propagation are developed in order to aid the design procedures. The acoustic pressure wave propagation in the sonoreactor is simulated by solving the Helmholtz equation using a meshless numerical method. The paper implements both the state-of-the-art linear model and a nonlinear wave propagation model recently introduced by Louisnard (2012), and presents a novel iterative solution procedure for the nonlinear propagation model which can be implemented using any numerical method and/or programming tool. Comparative results regarding both the linear and the nonlinear wave propagation are shown. Effects of bubble size distribution and bubble volume fraction on the acoustic wave propagation are discussed in detail. The simulations demonstrate that the nonlinear model successfully captures the realistic spatial distribution of the cavitation zones and the associated acoustic pressure amplitudes.
Keywords:Nonlinear propagation  Acoustic cavitation  Bubble dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号