首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric,optimization, kinetic and isotherm study
Institution:1. Chemistry Department, Yasouj University Yasouj, 75918-74831, Iran;2. Department of Physics, Yasouj University, Yasouj 75918-74831, Iran;3. Department of Polymer Engineering, Golestan University, Gorgan 49188-88369, Iran;4. Department of Chemistry, Erciyes University, 38039 Kayseri, Turkey;1. Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran;2. Department of Physics, Yasouj University, Yasouj 75918-74831, Iran;3. Department of Chemistry, Faculty of Science, Gachsaran Branch, Islamic Azad University, Gachsaran 75818-63876, Iran;4. Process Intensification Laboratory, Chemical Engineering Department, Yasouj University, Yasouj 759418-74831, Iran
Abstract:Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019 g ZnO: Cr-NPs-AC, 3.9 min sonication at 4.5, 4.8 and 4.7 mg L?1 of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R2, adjusted and predicted R2 for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6 mg g?1 for MG, EY and AO, respectively.
Keywords:Malachite green  Eosin yellow  Auramine O  Chromium doped zinc oxide nanoparticles  Sonochemical assisted hydrothermal  Ultrasound-assisted adsorption
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号