首页 | 本学科首页   官方微博 | 高级检索  
     

卖空限制下知情交易的测度及识别研究
引用本文:王苏生,许静霞,谢秉磊. 卖空限制下知情交易的测度及识别研究[J]. 运筹与管理, 2018, 27(11): 137-146. DOI: 10.12005/orms.2018.0266
作者姓名:王苏生  许静霞  谢秉磊
作者单位:1.哈尔滨工业大学深圳 经济管理学院,广东 深圳 518055; 2.哈尔滨工业大学深圳 建筑学院,广东 深圳 518055
基金项目:深圳市科技计划项目(JCYJ20140417173156101);黑龙江省自然科学基金项目(E201152)
摘    要:经典的测量知情交易概率的模型默认交易者可以无限制的按照私有信息进行卖空交易,而目前我国股票市场存在卖空限制,直接将经典模型应用到我国股票市场时会使测量结果出现偏差。考虑到我国股票市场现状,本文在经典的知情交易概率模型中引入两个卖空限制参数,构建了本文的SC-TPIN模型。通过对融券标的中发生利空消息的股票样本进行实证分析,证实了本文构建的SC-TPIN模型估计出的结果与实际情况相符合。本文还以SC-TPIN模型估计出的SCTPIN值为参照,基于样本股票的低频数据构建了知情交易识别指标组,并使用数据挖掘中的支持向量机算法、KNN算法及Logit模型对黑白样本的知情交易高低情况进行识别比较,构建知情交易识别体系,发现使用支持向量机算法识别全样本的正确率达到了89%,识别效果较理想。

关 键 词:卖空限制  PIN模型  知情交易  分类识别  
收稿时间:2018-04-20

Measurement and Identification of Informed Trading Under Short-sell Constraint
WANG Su-sheng,XU Jing-xia,XIE Bing-lei. Measurement and Identification of Informed Trading Under Short-sell Constraint[J]. Operations Research and Management Science, 2018, 27(11): 137-146. DOI: 10.12005/orms.2018.0266
Authors:WANG Su-sheng  XU Jing-xia  XIE Bing-lei
Affiliation:1.School of Economics and Management, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China;2.School of Architecture, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
Abstract:The classical model of the probability of informed trading assumes that traders can make short-sell freely based on private information. This assumption, however, is violated in China's stock market due to the short-sell constraints. Therefore, the prediction of classical model may not hold in China’s stock market. Considering the status quo of the stock market in China, we develop a SC-TPIN model by incorporating two short-sell constraint variables into the classical model, and test our model using security lending stocks with bad news. Our model is well supported by the data. Base on the SCTPIN value estimated by SC-TPIN model, we develop the informed trading identification indicator group by using low frequency trading data of our sample stocks. We also develop our informed trading identification system by discerning and comparing the informed trading type of our black and white samples using support vector machine, KNN and Logit algorithm, respectively. The results show that the identification accuracy of support vector machine algorithm is as high as 89%, capable of identification effectively. In this paper, we prove that the order flow information contained in our SC-TPIN model is consistent with the actual order flow information, and the identification accuracy based on the SC-TPIN value is higher than that based on the TPIN value, showing that our SC-TPIN model can more effectively measure informed trading of stocks with bad news in China’s stock market.
Keywords:short-sell constraint  PIN model  informed trading  classification and identification  
本文献已被 CNKI 等数据库收录!
点击此处可从《运筹与管理》浏览原始摘要信息
点击此处可从《运筹与管理》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号