首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation of efflorescence of inorganic aerosols using fluorescence spectroscopy
Authors:Choi Man Yee  Chan Chak K
Institution:Department of Chemical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
Abstract:The phase transition is one of the most fundamental phenomena affecting the physical and chemical properties of atmospheric aerosols. Efflorescence, in particular, is not well understood, partly because the molecular interactions between the solute and water molecules of saturated or supersaturated solution droplets have not been well characterized. Recently, we developed a technique that combines the use of an electrodynamic balance and a fluorescence dye, 8-hydroxyl-1,3,6-pyrenetrisulfonate (pyranine), to study the distributions of solvated and free water in aqueous droplets (Choi, M. Y.; Chan, C. K.; Zhang, Y. H. J. Phys. Chem. A 2004, 108, 1133). We found that the equality of the amounts of solvated and free water is a necessary but not sufficient condition for efflorescence. For efflorescing compounds such as Na2SO4, (NH4)2SO4, and a mixture of NaCl and Na2SO4, the amount of free water decreases, while that of solvated water is roughly constant in bulk measurements and decreases less dramatically than that of free water in single-particle measurements as the relative humidity (RH) decreases. Efflorescence of the supersaturated droplets of these solutions occurs when the amounts of free and solvated water are equal, which is consistent with our previous observation for NaCl. For nonefflorescing compounds in single-particle levitation experiments such as MgSO4 and Mg(NO3)2, the amounts of free and solvated water are equal at a water-to-solute molar ratio of about 6, at which spectral changes due to the formation of contact ion pairs between magnesium and the anions occur as shown by Raman spectroscopy. Fluorescence imaging shows that the droplets of diluted Mg(NO3)2 (at 80% RH) and MgSO4 are homogeneous but those of NaCl, Na2SO4, (NH4)2SO4, and supersaturated Mg(NO3)2 (at 10% RH) are heterogeneous in terms of the solvated-to-free water distribution. The solvated-to-free water ratios in NaCl, Na2SO4, and (NH4)2SO4 droplets are higher in the outer regions by about half a radius deep than at the center of the droplets.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号