首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultrasonic scattering cross sections of shell-encapsulated gas bubbles immersed in a viscoelastic liquid: first and second harmonics
Authors:Machado João Carlos  Valente Jefferson Silva
Institution:Biomedical Engineering Program, COPPE/Federal University of Rio de Janeiro, PO Box 68510, 21945-970 Rio de Janeiro, RJ, Brazil. jcm@peb.ufrj.br
Abstract:The oscillations of gas bubbles, without shell, immersed in viscoelastic liquids and driven by an acoustic wave have been the subject of several investigations. They demonstrate that the viscosity coefficient and the spring constant of the liquid have significant influence on the scattering cross section of the gas bubble. For shell-encapsulated gas bubbles, the investigations have been concentrated to bubbles immersed in a pure viscous liquid. This present work computes the ultrasonic scattering cross section, first and second harmonics, of shell-encapsulated gas bubbles immersed in a viscoelastic liquid. The theoretical model of the bubble oscillation is based on the generalized Rayleigh-Plesset equation of motion of a spherical cavity immersed in a viscoelastic liquid represented by a three-parameter linear Oldroyd model. The scattering cross section is computed for Albunex type of bubble (shell thickness=15 nm, shell shear viscosity=1.77 Pas, shell modulus of rigidity=88.8 MPa) irradiated by a 3.5 MHz ultrasonic pressure wave with an amplitude of 30 kPa. The results demonstrate that encapsulated bubbles respond independently of the surrounding liquid being pure viscous or viscoelastic as long as the surrounding liquid shear viscosity is as low as 10(-3) Pas. Nevertheless, for higher shear viscosities, the bubble responds differently if the surrounding liquid is pure viscous or viscoelastic. In general, the scattering cross sections of first and second harmonics are larger for the viscoelastic liquid.
Keywords:43  25  Yw  43  35  Mr  43  40  Ey
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号