首页 | 本学科首页   官方微博 | 高级检索  
     

一种气象观测数据求导的新方法
引用本文:王业桂,蔡其发,黄思训. 一种气象观测数据求导的新方法[J]. 物理学报, 2010, 59(6): 4359-4368
作者姓名:王业桂  蔡其发  黄思训
作者单位:(1)解放军理工大学气象学院,南京 211101; (2)中国科学院大气物理研究所,北京 100029
基金项目:国家自然科学基金(批准号:40775023)资助的课题.
摘    要:气象观测数据不可避免地带有观测误差,而对带有误差的离散数据求导是一个不适定的反问题.为了解决这一长期困扰气象工作者的问题,利用吉洪诺夫正则化思想,提出了矩形区域内观测数据的二维一阶偏导数重构算法.通过系列模拟观测数据试验检验了该算法的性能,表明该算法有效且计算精度高.另外,应用该算法对气象观测资料进行客观分析,结果表明:该算法作为一种新的客观分析方法是可行的,并且还能提高小尺度天气系统的识别能力.关键词:数值微分吉洪诺夫正则化客观分析

关 键 词:数值微分  吉洪诺夫正则化  客观分析
收稿时间:2009-08-16

A new method for calculating the derivation of meteorological observational data
Wang Ye-Gui,Cai Qi-Fa,Huang Si-Xun. A new method for calculating the derivation of meteorological observational data[J]. Acta Physica Sinica, 2010, 59(6): 4359-4368
Authors:Wang Ye-Gui  Cai Qi-Fa  Huang Si-Xun
Abstract:Meteorological observation data have observational errors inevitably. It is an ill-posed inverse problem to perform the derivation of discrete data with observation errors. In order to solve the perplexing problem, this paper puts forward the new algorithm which reconstructs the first-order partial derivatives of the two-dimensional observation data in the rectangular region, which is based on the idea of Tikhonov regularization . We test the performance of the algorithm with a series of simulating observation data, the results show that the algorithm is effective and has higher accuracy. It is feasible to analyze meteorological observation data with the algorithm and can enhance the recognizing ability for the small-scale weather systems.
Keywords:numerical differentiation  Tikhonov regularization  objective analysis
本文献已被 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号