首页 | 本学科首页   官方微博 | 高级检索  
     

基于Retinex理论与概率非局部均值的红外图像增强方法
引用本文:李佳,李少娟,段小虎,姚远,李骥阳,王立志. 基于Retinex理论与概率非局部均值的红外图像增强方法[J]. 光子学报, 2020, 49(4): 182-191. DOI: 10.3788/gzxb20204904.0410003
作者姓名:李佳  李少娟  段小虎  姚远  李骥阳  王立志
作者单位:西安电子科技大学物理与光电工程学院,西安710071;空军工程大学基础部,西安710051,空军工程大学基础部,西安710051,空军工程大学基础部,西安710051,空军工程大学基础部,西安710051,空军工程大学基础部,西安710051,空军工程大学基础部,西安710051
基金项目:空军工程大学基础部基金;教育部联合基金项目
摘    要:针对传统红外图像增强算法中细节模糊及过度增强的问题,提出了一种基于Retinex理论与概率非局部均值相结合的红外图像增强方法.首先通过单尺度Retinex方法调整图像中过暗与过亮部分的灰度级;然后利用概率非局部均值对图像进行分解处理得到基本层与细节层,对基本层采用直方图均衡化拉伸对比度,对细节层采用非线性函数进行增强;最后,将不同层次的结果融合得到对比度与细节增强的红外图像.用该方法对多组不同场景的红外图像进行仿真实验,并将其与多种增强方法进行主、客观对比分析,结果表明所提方法在红外图像的细节及对比度增强方面都获得了更好的效果.

关 键 词:红外图像  图像增强  RETINEX理论  概率非局部均值  各向异性扩散  对比度

Infrared Image Enhancement Based on Retinex and Probability Nonlocal Means Filtering
LI Jia,LI Shao-juan,DUAN Xiao-hu,YAO Yuan,LI Ji-yang,WANG Li-zhi. Infrared Image Enhancement Based on Retinex and Probability Nonlocal Means Filtering[J]. Acta Photonica Sinica, 2020, 49(4): 182-191. DOI: 10.3788/gzxb20204904.0410003
Authors:LI Jia  LI Shao-juan  DUAN Xiao-hu  YAO Yuan  LI Ji-yang  WANG Li-zhi
Affiliation:(School of Physics and Optoelectronic Engineering,Xidian University,Xi′an 710071,China;Department of Basic,Air Force Engineering University,Xi′an 710051,China)
Abstract:Aiming at the problem of over enhancement and low detailed in traditional image enhancement algorithm,an infrared image enhancement method based on Retinex theory and probability nonlocal mean is proposed.Firstly,the grayscale in deep dark and bright parts of image is adjusted by the single scale Retinex method.Then the image is decomposed into basic level and detail level by probability nonlocal mean filtering.For the basic layer,histogram equalization is used to stretch contrast,and the nonlinear function is used to enhance details for the detail layer.Finally,the different levels of the enhancement results are fused to obtain the infrared image with the contrast and detail enhanced.The simulated experiments on infrared images of different scenes are carried out through the proposed method.And the results are compared with those of different enhancement algorithms on the subjective and objective sides.The comparisons demonstrate that proposed method has better results in detail and contrast enhancement of infrared image.
Keywords:Infrared image  Image enhancement  Retinex theory  Probability nonlocal means  Anisotropic diffusion  Contrast ratio
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号