首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Discrete element method simulations of Mars Exploration Rover wheel performance
Institution:1. University of Alaska Fairbanks, Institute of Northern Engineering, P.O. Box 755910, Fairbanks, AK 99775-5910, USA;2. Massachusetts Institute of Technology, Robotic Mobility Group, Laboratory for Manufacturing and Productivity, 77 Massachusetts Ave., Cambridge, MA 02139, USA;3. Washington University in St. Louis, Campus Box 1169, One Brookings Dr., St. Louis, MO 63130, USA;4. NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035-1000, USA;1. OHB System AG;2. Massachusetts Institute of Technology
Abstract:Mars Exploration Rovers (MERs) experienced mobility problems during traverses. Three-dimensional discrete element method (DEM) simulations of MER wheel mobility tests for wheel slips of i = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99 were done to examine high wheel slip mobility to improve the ARTEMIS MER traverse planning tool. Simulations of wheel drawbar pull and sinkage MIT data for i ? 0.5 were used to determine DEM particle packing density (0.62) and contact friction (0.8) to represent the simulant used in mobility tests. The DEM simulations are in good agreement with MIT data for i = 0.5 and 0.7, with reasonable but less agreement at lower wheel slip. Three mobility stages include low slip (i < 0.3) controlled by soil strength, intermediate slip (i  0.3–0.6) controlled by residual soil strength, and high slip (i > 0.6) controlled by residual soil strength and wheel sinkage depth. Equilibrium sinkage occurred for i < 0.9, but continuously increased for i = 0.99. Improved DEM simulation accuracy of low-slip mobility can be achieved using polyhedral particles, rather than tri-sphere particles, to represent soil. The DEM simulations of MER wheel mobility can improve ARTEMIS accuracy.
Keywords:Mars Exploration Rovers  Discrete element method simulation  Mobility testing  Wheel slip
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号