首页 | 本学科首页   官方微博 | 高级检索  
     


The melting behaviour of uranium/neptunium mixed oxides
Affiliation:1. CEA, DEN, DEC, SPUA, LMPC, F-13108 Saint-Paul-lez Durance, France;2. European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe, Germany
Abstract:
The melting behaviour in the pseudo-binary system (UO2 + NpO2) has been studied experimentally for the first time in this work with the help of laser heating under controlled atmosphere. It has been observed that the solidus and liquidus lines of this system follow an ideal solution behaviour (negligible mixing enthalpy) between the well-established solid/liquid transition temperatures of pure UO2 (3130 K) and that recently assessed for NpO2 (T = 3070 K). Pre- and post-melting material characterizations performed with the help of X-ray diffraction and Raman spectroscopy are also consistent with ideal mixing of the two end members. Such behaviour follows the similar structure and bonding properties of tetravalent uranium and neptunium and the similar melting points of the two oxides. The interest of this investigation is twofold. From a technological viewpoint, it indicates that the incorporation of NpO2 in UO2 fuel or transmutation targets is a viable option to recycle neptunium without inducing any relevant change in the chemical or thermal stability of the uranium dioxide matrix, even up to the melting point. From a more fundamental perspective, it confirms that actinide dioxides, and particularly UO2, tend to mix in a way closer to ideal, the closer are the atomic numbers, 5-f electron shell filling, atomic radii and oxygen potentials of the metals forming the pure dioxides.
Keywords:High temperature  Laser heating  Mixed oxides  Nuclear fuel  Transmutation  Solid solution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号