首页 | 本学科首页   官方微博 | 高级检索  
     

半导体自组织量子点量子发光机理与器件
引用本文:尚向军,马奔,陈泽升,喻颖,查国伟,倪海桥,牛智川. 半导体自组织量子点量子发光机理与器件[J]. 物理学报, 2018, 67(22): 227801-227801. DOI: 10.7498/aps.67.20180594
作者姓名:尚向军  马奔  陈泽升  喻颖  查国伟  倪海桥  牛智川
作者单位:1. 中国科学院半导体研究所, 半导体超晶格国家重点实验室, 北京 100083;2. 中国科学院大学材料科学与光电技术学院, 北京 100049
基金项目:国家自然科学基金(批准号:91321313,90921015,61505196)资助的课题.
摘    要:
介绍了自组织量子点单光子发光机理及器件研究进展.主要内容包括:半导体液滴自催化外延GaAs纳米线中InAs量子点和GaAs量子点的单光子发光效应、自组织InAs/GaAs量子点与分布布拉格平面微腔耦合结构的单光子发光效应和器件制备,单量子点发光的共振荧光测量方法、量子点单光子参量下转换实现的纠缠光子发射、单光子的量子存储效应以及量子点单光子发光的光纤耦合输出芯片制备等.

关 键 词:自组织量子点  纳米线  微腔  单光子  纠缠光子
收稿时间:2018-04-03

Physics and devices of quanutm light emission from semicoductor self-assembled quantum Dots
Shang Xiang-Jun,Ma Ben,Chen Ze-Sheng,Yu Ying,Zha Guo-Wei,Ni Hai-Qiao,Niu Zhi-Chuan. Physics and devices of quanutm light emission from semicoductor self-assembled quantum Dots[J]. Acta Physica Sinica, 2018, 67(22): 227801-227801. DOI: 10.7498/aps.67.20180594
Authors:Shang Xiang-Jun  Ma Ben  Chen Ze-Sheng  Yu Ying  Zha Guo-Wei  Ni Hai-Qiao  Niu Zhi-Chuan
Affiliation:1. State Key Laborotory of Superlattices and Microsturctures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
Self-assembled semiconductor single quantum dots (QDs), as a good candidate of solid-state real single photon (SP) emitters in high purity and counting rate, have attracted great attention in recent two decades, promising for quantum information, optical quantum computation, quantum storage, and quantum coherent manipulation. To isolate single QD from the other QDs surrounding, 1) dilute QD density is well controlled during epitaxy; 2) micro-pillars or nanowires individually in space as hosts are fabricated. To enhance their uni-directional emission, GaAs/AlAs distributed Bragg reflector (DBR) planar cavity is integrated. To improve the system (i.e. confocal microscope, traditionally) stability and its optical collection efficiency, a near-field fiber coupling by adhering a micro-pillar chip to fiber facets directly is used. To enhance the coherence of QD spontaneous emission, resonant excitation technique is applied. In this article, we review our research progress in self-assembled QD SP emission, including SP emission from InAs or GaAs QDs on Ga droplet-self-catalyzed GaAs nanowires (with g2(0) of 0.031 or 0.18, respectively), SP emission from InAs/GaAs QDs coupled with high-Q (1000-5000) DBR micro-pillar cavities and their fiber-coupled device fabrication with SP fiber output rate ~1.8 MHz, single QD resonant fluorescence with inter-dot coherent visibility of 40%, strain-coupled bilayer InAs QDs to extend their emission wavelength to 1320 nm and parametric down conversion of 775 nm SP emission from single QD in nanowire to realize entangled photon pairs at 1550 nm (entanglement fidelity of 91.8%) for telecomm application, and definite quantum storage of InAs QD SPs at 879 nm in ion-doped solid (at most 100 time-bins). In future, there will be still several urgent things to do, including 1) puring the environment of a single QD (e.g. growing GaAs QDs to avoid the wetting layer, and optimizing QD growth to avoid smaller QDs) to reduce its spectral diffusion and developing a high-symmetric QD (e.g. GaAs QD) to reduce the fine structure splitting of its emission; 2) positioning single QD precisely for a good alignment of single QD to a micro-cavity or fiber cone (single mode with high numerical aperture) to increase optical excitation efficiency and SP collection efficiency; 3) developing optical quantum integrated chip, including hybrid structures of active micro-cavity and passive waveguide, and high-transmission waveguide beamsplitter or Mach-Zender interferometer to improve SP extraction (micro-cavity), collection (optical setup) and counting rate (at avalanched photon detectors and coincidence counting module).
Keywords:individual quantum dots  nanowire  micro-cavity  single photon  entangled photon pair
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号