首页 | 本学科首页   官方微博 | 高级检索  
     检索      

超冷铯(60D5/2)2 Rydberg分子的双色光缔合光谱
引用本文:白景旭,韩小萱,白素英,焦月春,赵建明,贾锁堂.超冷铯(60D5/2)2 Rydberg分子的双色光缔合光谱[J].物理学报,2018,67(23):233201-233201.
作者姓名:白景旭  韩小萱  白素英  焦月春  赵建明  贾锁堂
作者单位:1. 山西大学激光光谱研究所, 量子光学与光量子器件国家重点实验室, 太原 030006; 2. 山西大学极端光学协同创新中心, 太原 030006
基金项目:国家重点研发计划(批准号:2017YFA0304203)、国家自然科学基金(批准号:61475090,61675123,61775124,11804202)、国家自然科学基金重点项目(批准号:11434007,61835007)、长江学者和创新团队发展计划(编号:RTIRT_17R70)和山西省"1331工程"重点学科建设计划资助的课题.
摘    要:本文主要从理论和实验上研究超冷铯(60D5/22 Rydberg分子的双色光缔合光谱.数值计算了铯60D5/2 Rydberg原子对态的长程电多极相互作用和(60D5/22 Rydberg分子的绝热势能曲线,获得了(60D5/22 Rydberg分子的势阱深度和平衡间距.实验上利用双色光缔合超冷铯原子的方法制备了(60D5/22 Rydberg分子.其中,第一色激光(pulse-A)双光子共振激发种子Rydberg原子A;第二色激光(pulse-B,失谐于分子的束缚能)共振激发第二个Rydberg原子B,原子A与B由分子势阱束缚形成超冷(60D5/22 Rydberg分子.由脉冲场电离探测技术获得Rydberg分子的光缔合光谱,测量的Rydberg分子的势阱深度与理论计算结果相一致.

关 键 词:超冷Rydberg分子  双色光缔合  绝热势能曲线
收稿时间:2018-09-21

Two-color photoassociation spectra of ultra-cold Cs (60D5/2)2 Rydberg molecule
Bai Jing-Xu,Han Xiao-Xuan,Bai Su-Ying,Jiao Yue-Chun,Zhao Jian-Ming,Jia Suo-Tang.Two-color photoassociation spectra of ultra-cold Cs (60D5/2)2 Rydberg molecule[J].Acta Physica Sinica,2018,67(23):233201-233201.
Authors:Bai Jing-Xu  Han Xiao-Xuan  Bai Su-Ying  Jiao Yue-Chun  Zhao Jian-Ming  Jia Suo-Tang
Institution:1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract:The long-range multipole interactions between ultra-cold Rydberg atoms form adiabatic potentials, one of which shows a binding potential that can be used to bind Rydberg-Rydberg molecules. Rydberg-atom molecule, known as macrodimer due to its larger size (~μm), has the properties of the abundant vibrational energy levels and large electric dipole moment and so on. Compared with Rydberg atom, the Rydberg molecule, including Rydberg-ground molecule and Rydberg-Rydberg molecule, is susceptible to manipulate by an external field and possesses potential applications in the weak-signal detection, the quantum gas correlation measurement and the vacuum fluctuation and so on. In this paper, we investigate a (60D5/2)2 Rydberg macrodimer theoretically and experimentally. In the calculation, we take into account the multipole interaction of a Rydberg-atom pair, including dipole-dipole, dipole-quadrupole, dipole-octupole and quadrupole-quadrupole interaction and so on. The adiabatic potential of 60D5/2 Rydberg-atom pair is obtained by diagonalizing the interaction Hamiltonian on a grid of internuclear separations, R. The potential depth and binding length of the Rydberg molecular potential well are obtained. In experiment, we prepare the ultra-cold Cs (60D5/2)2 Rydberg molecules by a two-color photoassociation method in a cesium ultracold atom trap. The first-color (pulse-A) resonantly excites a seed Rydberg atom A, and the second color (pulse-B) is detuned and resonantly excites the second Rydberg atom B near to the atom A. Both pulse-A and pulse-B are two-photon excitations (852 nm + 510 nm), between which their 852-nm lasers have the same frequency, whereas the 510-nm laser frequency of the pulse-A is set to be resonant with the atomic transition and the frequency of the pulse-B is detuned by using a double-passed acousto-optic modulator. When the pulse-B is detuned to the molecular binding energy, atom-A and-B are bonded, forming an ultra-cold Cs (60D5/2)2 Rydberg molecule. The two-color photoassociation spectra of Rydberg-Rydberg molecules are detected by the field ionization of Rydberg atoms and molecules with a ramped electric field. Molecular spectra are compared with calculated adiabatic molecular potentials, which yields the binding energy and equilibrium internuclear distance. The two-color photoassociation method used in this work has a doubly resonant character that results in the enhanced excitation rate.
Keywords:ultra-cold Rydberg-Rydberg molecule  two-color photoassociation  oindent adiabatic potential
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号