首页 | 本学科首页   官方微博 | 高级检索  
     检索      

激光冷却SH~–阴离子的理论研究
引用本文:万明杰,李松,金成国,罗华锋.激光冷却SH~–阴离子的理论研究[J].物理学报,2019,68(6):63103-063103.
作者姓名:万明杰  李松  金成国  罗华锋
作者单位:1. 宜宾学院计算物理四川省高等学校重点实验室, 宜宾 644007; 2. 长江大学物理与光电工程学院, 荆州 434023; 3. 宜宾学院化学与工程学院, 宜宾 644007
基金项目:国家自然科学基金理论物理专项(批准号:11647075,11747071)和宜宾学院计算物理四川省高等学校重点实验室开放课题基金(批准号:JSWL2014KF05)资助的课题.
摘    要:本文采用多组态相互作用及Davidson修正方法和全电子基组计算了SH~-阴离子的X~1∑~+,a~3∏和A~1∏态的势能曲线、电偶极矩和跃迁偶极矩.计算的光谱常数与实验值及已有的理论值符合得很好.在计算中考虑了自旋-轨道耦合效应.计算得到a~3∏_1(v'=0)?X~1∑_(0+)~+(v"=0)和A~1∏_1(v'=0)?X~1Σ_(0+)~+(v"=0)跃迁具有高对角分布的弗兰克-康登因子,分别为0.9990和0.9999;计算得到a~3∏_1和A~1∏_1态的自发辐射寿命分别为1.472和0.188 ms.A~1∏_1?X~1∑_(0+)~+跃迁存在中间态a~3∏_(0+)和a~3∏_1,但中间态对激光冷却SH~-阴离子的影响可以忽略.分别利用a~3∏_1(v'=0)? X~1∑_(0+)~+(v"=0)和A~1∏_1(v'=0)? X~1∑_(0+)~+(v"=0)跃迁构建了准闭合的能级系统,冷却所需的激光波长分别为492.27和478.57 nm.最后预测了激光冷却SH~-阴离子能达到的多普勒温度和反冲温度.这些结果为进一步实验提供了理论参数.

关 键 词:自旋-轨道耦合效应  弗兰克-康登因子  自发辐射寿命  激光冷却
收稿时间:2018-11-16

Theoretical study of laser-cooled SH- anion
Wan Ming-Jie,Li Song,Jin Cheng-Guo,Luo Hua-Feng.Theoretical study of laser-cooled SH- anion[J].Acta Physica Sinica,2019,68(6):63103-063103.
Authors:Wan Ming-Jie  Li Song  Jin Cheng-Guo  Luo Hua-Feng
Institution:1. Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin 644007, China; 2. School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China; 3. College of Chemistry and Chemical Engineering, Yibin University, Yibin 644007, China
Abstract:The potential energy curves, dipole moments, and transition dipole moments for the \${{\rm{X}}^1}{\Sigma ^ + }$\, \${{\rm{a}}^3}\Pi $\, and \${{\rm{A}}^1}\Pi $\ electronic state of sulfur hydride anion (SH-) are calculated by using the multi-reference configuration interaction method plus Davidson corrections (MRCI+Q) with all-electron basis set. The scalar relativistic corrections and core-valence correlations are also considered. In the CASSCF calculations, H(1s) and S(3s3p4s) shells are chosen as active space, and the rest orbitals S(1s2s2p) as closed-shell. In the MRCI+Q calculations, the S(1s2s2p) shells are used for the core-valence correlation. Spectroscopic parameters, Einstein spontaneous emission coefficient, Franck-Condon factors, and spontaneous radiative lifetimes are obtained by using Le Roy's LEVEL8.0 program. The calculated spectroscopic parameters are in good agreement with available experimental data and theoretical values. Spin-orbit coupling (SOC) effects are evaluated with Breit-Pauli operators at the MRCI+Q level. Transition dipole moments (TDMs) for the \${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\, \${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\, \${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\, \${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _{{0^ + }}}$\ and \${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _1}$\ transitions are also calculated. The strength for the \${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\ is the strongest in these five transitions, the value of TDM at Re is -1.3636 D. We find that the value of TDM for the \${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\ transition at Re is 0.5269 D. Therefore, this transition must be taken into account to build the scheme of laser-cooled SH- anion. Highly diagonally distributed Franck-Condon factor f00 for the \${{\rm{a}}^3}{\Pi _1}(\nu ' = 0) \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\ \$ (\nu ' = 0)$\ transition is 0.9990 and the value for the \${{\rm{A}}^1}{\Pi _1}(\nu ' = 0) \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + (\nu ' = 0)$\ transition is 0.9999. Spontaneous radiative lifetimes of \$\tau \left( {{{\rm{a}}^3}{\Pi _1}} \right)= 1.472 {\text{μ}}{\rm{s}}$\ and \$\tau \left( {{{\rm{A}}^1}{\Pi _1}} \right)=0.188 {\text{μ}}{\rm{s}}$\ are obtained, which can ensure that laser cools SH- anion rapidly. To drive the \${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\ and \${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\ transitions, just one laser wavelength is required. The wavelengths are 492.27 nm and 478.57 nm for two transitions, respectively. Notably, the influences of the intervening states \${{\rm{a}}^3}{\Pi _1}$\ and \${{\rm{a}}^3}{\Pi _{{0^{\rm{ + }}}}}$\ on the \${{\rm{A}}^1}{\Pi _1} \leftrightarrow {X^1}\Sigma _{{0^ + }}^ + $\ transition are small enough to implement a laser cooling project. A spin-forbidden transition and a three-electronic-level transition optical scheme of laser-cooled SH- anion are constructed, respectively. In addition, the Doppler temperatures and recoil temperatures for the \${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\ and \${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\ transitions of laser-cooled SH- anion are also obtained, respectively.
Keywords:spin-orbit coupling  Franck-Condon factors  spontaneous radiative lifetimes  laser cooling
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号