首页 | 本学科首页   官方微博 | 高级检索  
     检索      

In0.53Ga0.47As/InP量子阱与体材料的1 MeV电子束辐照光致发光谱研究
引用本文:玛丽娅,李豫东,郭旗,艾尔肯,王海娇,曾骏哲.In0.53Ga0.47As/InP量子阱与体材料的1 MeV电子束辐照光致发光谱研究[J].物理学报,2015,64(15):154217-154217.
作者姓名:玛丽娅  李豫东  郭旗  艾尔肯  王海娇  曾骏哲
作者单位:1. 中国科学院特殊环境功能材料与器件重点实验室, 新疆电子信息材料与器件重点实验室, 中国科学院新疆理化技术研究所, 乌鲁木齐 830011;2. 中国科学院大学, 北京 100049
基金项目:国家自然科学基金(批准号: 11275262)资助的课题.
摘    要:为获得对In0.53Ga0.47As/InP材料在电子束辐照下的光致发光谱变化规律, 开展了1 MeV电子束辐照试验, 注量为 5×1012-9×1014 cm-2. 样品选取量子阱材料和体材料, 在辐照前后, 进行了光致发光谱测试, 得到了不同结构In0.53Ga0.47As/InP材料在1 MeV电子束辐照下的不同变化规律; 对比分析了参数退化的物理机理. 结果显示: 试验样品的光致发光峰强度随着辐照剂量增大而显著退化. 体材料最先出现快速退化, 而五层量子阱在注量达到6×1014 cm-2时, 就已经退化至辐照前的9%. 经分析认为原因有: 1)电子束进入样品后, 与材料晶格发生能量传递, 破坏晶格完整性, 致使产生的激子数量减少, 光致发光强度降低; 电子束辐照在材料中引入缺陷, 增加了非辐射复合中心密度, 导致载流子迁移率降低. 2)量子阱的二维限制作用使载流子运动受限, 从而能够降低载流子与非辐射复合中心的复合概率; 敏感区域截面积相同条件下, 体材料比量子阱材料辐射损伤更为严重. 3)量子阱的层数越多, 则异质结界面数越多, 相应的产生的界面缺陷数量也随之增多, 辐射损伤越严重.

关 键 词:In0.53Ga0.47As/InP  量子阱  电子束辐照  光致发光谱
收稿时间:2014-12-29

Photoluminescence spectra of 1 MeV electron beam irradiated In0.53Ga0.47As/InP quantum well and bulk materials
Ma Li-Ya,Li Yu-Dong,Guo Qi,Ai Er-Ken,Wang Hai-Jiao,Zeng Jun-Zhe.Photoluminescence spectra of 1 MeV electron beam irradiated In0.53Ga0.47As/InP quantum well and bulk materials[J].Acta Physica Sinica,2015,64(15):154217-154217.
Authors:Ma Li-Ya  Li Yu-Dong  Guo Qi  Ai Er-Ken  Wang Hai-Jiao  Zeng Jun-Zhe
Institution:1. Key Laboratory of Functional Materials and Devices for Special Environments of CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices; Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi 830011, China;2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Minimizing the impact of radiation-induced degradation on optoelectronic devices is important in several applications. Satellites and other spacecraft that fly in near-earth orbits (below 3.8 earth radius) are extremely susceptible to radiation damage caused by the high flux of electrons trapped in the earth’s magnetosphere. Optoelectronic devices are particularly vulnerable to displacement damage caused by electrons and protons. Effects of 1 MeV electron beam irradiation on the photoluminescence properties of In0.53Ga0.47As/InP quantum well (QW) and bulk structures, which are grown by metal-organic vapor phase epitaxy, are investigated. Samples are irradiated at room temperature using an ELV-8II accelerator with 1 MeV electron at doses ranging from 5×1012 to 9×1014 cm-2, and a dose rate of 1.075×1010 cm-2·s-1. Photoluminescence measurements are made using a 532 nm laser for excitation and a cooled Ge detector with lock-in techniques for signal detection. Photoluminescence intensity of all the structures is degraded after irradiation, and its reduction increases with increasing total dose of irradiation. Electron beam irradiation causes a larger reduction in the photoluminescence intensity and carrier lifetime of the bulk than that of quantum well. Photoluminescence intensity of five-layer quantum wells degenerates to 9% that before irradiation as the fluence reaches 6×1014 cm-2. As the electron beams bombard into the sample, the destruction of the lattice integrity will cause the decrease in the number of excitons and intensity of photoluminescence. Electron beam irradiation introduces defects in the samples, increases the density of the nonradiative recombination centers, and results in the decrease of carrier mobility. In a quantum well structure, due to the two-dimensional confinement, the probability of carrier nonradiative recombination at radiation-induced defect centers will be reduced. The reduction of photoluminescence intensity in the bulk is severer than in the quantum well while the cross-sectional area which is sensitive to radiation is kept the same. The number of interface defects which are produced by electron irradiation will increase with the number of layers in quantum well and the heterojunction interface of quantum wells, so is the degration of photoluminescence intensity. The degration is mainly due to the increase of non-radiative centers in the samples. By comparing the different structures, the quantum well structure shows a better radiation resistance.
Keywords:In0  53Ga0  47As/InP  quantum well  electron beam irradiation  photoluminescence
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号