首页 | 本学科首页   官方微博 | 高级检索  
     检索      

石墨烯封装单层二硫化钼的热稳定性研究
引用本文:刘乐,汤建,王琴琴,时东霞,张广宇.石墨烯封装单层二硫化钼的热稳定性研究[J].物理学报,2018,67(22):226501-226501.
作者姓名:刘乐  汤建  王琴琴  时东霞  张广宇
作者单位:1. 中国科学院纳米物理与器件重点实验室, 中国科学院物理研究所, 北京凝聚态物理国家研究中心, 北京 100190;2. 中国科学院大学物理学院, 北京 100190;3. 纳米材料与器件物理北京市重点实验室, 北京 100190;4. 量子物质科学协同创新中心, 北京 100190
基金项目:国家自然科学基金(批准号:51572289,61734001)和中国科学院(批准号:QYZDB-SSW-SLH004,XDPB06)资助的课题.
摘    要:将单层二硫化钼用石墨烯进行封装,构造了石墨烯和二硫化钼的范德瓦耳斯异质结构,并且分别在氩气(Ar)和氢气(H2)氛围下,详细研究了被封装的二硫化钼的热稳定性.结果表明:在氩气氛围中,石墨烯封装的二硫化钼在400–1000℃下一直保持稳定,而石墨烯和氧化硅上裸露的二硫化钼在1000℃时几乎全部分解;在氢气氛围中,石墨烯封装的二硫化钼在400–1000℃下一直稳定存在,而石墨烯和氧化硅上裸露的二硫化钼在800℃下已经完全分解.综上可得,在氩气和氢气的氛围下,被石墨烯封装的二硫化钼的热稳定性得到了显著的提高.该研究通过用石墨烯将单层的二硫化钼进行封装以提高其热稳定性,在未来以单层二硫化钼作为基础材料的电子器件中,可以保证其在高温下能够正常工作.该研究也为提高其他二维材料的热稳定性提供了一种可行的方法和思路.

关 键 词:二硫化钼  热稳定性  拉曼光谱  石墨烯
收稿时间:2018-06-28

Thermal stability of MoS2 encapsulated by graphene
Liu Le,Tang Jian,Wang Qin-Qin,Shi Dong-Xia,Zhang Guang-Yu.Thermal stability of MoS2 encapsulated by graphene[J].Acta Physica Sinica,2018,67(22):226501-226501.
Authors:Liu Le  Tang Jian  Wang Qin-Qin  Shi Dong-Xia  Zhang Guang-Yu
Institution:1. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;2. School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China;3. Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China;4. Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract:Monolayer molybdenum disulfide (MoS2), a semiconductor material with direct band gap, is considered to be an important fundamental material for the future development of the semiconductor industry. In order to apply the material to semiconductor devices, we have to investigate the electrical, optical and thermal properties of MoS2. People have always been concerning about the electrical and optical properties, but pay little attention to the thermal properties of MoS2, especially thermal stability. It is well known that semiconductor device generates a lot of heat when it works, sometimes even running in high temperature environment. The above conditions all require the material which has good thermal stability. So we focus on how to improve the thermal stability of MoS2. In this paper, we report the construction of the van der Waals heterostructures of graphene and MoS2 by encapsulating monolayer MoS2 with graphene, and dissect the thermal stability of encapsulated MoS2 in argon (Ar) and hydrogen (H2) atmosphere respectively. The results show that in Ar atmosphere, MoS2 encapsulated by graphene keeps stable when the temperature increases to 1000 ℃, while the exposed MoS2 is decomposed almost completely at 1000 ℃. In H2 atmosphere, MoS2 encapsulated by graphene keeps stable when the temperature increases to 1000 ℃, but the exposed MoS2 is decomposed completely at 800 ℃. In conclusion, the thermal stability of MoS2 encapsulated by graphene can be improved significantly. We analyze the reason why MoS2 encapsulated by graphene gains good thermal stability. Firstly, the covered graphene provides additional van der Waals forces, which increases the decomposition energy of MoS2, making it more stable at high temperature environment. Secondly, graphene separates MoS2 from the external environment, preventing MoS2 from contacting and reacting with external gas, which greatly improves the thermal stability of MoS2 at high temperature environment. Meanwhile, graphene covers the active defect site on MoS2, making it difficult to react at defects. In summary, the monolayer MoS2 devices can work normally at high temperature when MoS2 is encapsulated by graphene. In addition, our work also provides a feasible approach to improving the thermal stability of other two-dimensional materials.
Keywords:molybdenum disulfide  thermal stability  Raman spectra  graphene
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号