首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究
引用本文:丁东,杨仕娥,陈永生,郜小勇,谷锦华,卢景霄.Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究[J].物理学报,2015,64(24):248801-248801.
作者姓名:丁东  杨仕娥  陈永生  郜小勇  谷锦华  卢景霄
作者单位:郑州大学物理工程学院, 材料物理教育部重点实验室, 郑州 450052
基金项目:国家自然科学基金(批准号: 11204276)和河南省高等学校重点科研项目(批准号: 15A140041)资助的课题.
摘    要:利用价格低廉、性能优良的金属纳米颗粒增强太阳电池的光吸收具有广阔的应用前景. 通过建立三维数值模型, 模拟了微晶硅薄膜电池前表面周期性分布的Al纳米颗粒阵列对电池光吸收的影响, 并对其结构参数进行了优化. 模拟结果表明: 对于球状Al纳米颗粒阵列, 影响电池光吸收的关键参数是周期P与半径R的比值, 或者说是颗粒的表面覆盖度; 当P/R=4–5时, 总的光吸收较参考电池提高可达20%. 与球状颗粒相比, 优化后的半球状Al纳米颗粒阵列可获得更好的陷光效果, 但后者对颗粒半径R的变化较敏感. 另外, 结合电场分布, 对电池光吸收增强的物理机理进行了分析.

关 键 词:Al纳米颗粒阵列  表面等离激元  太阳电池  陷光
收稿时间:2015-08-02

Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays
Ding Dong,Yang Shi-E,Chen Yong-Sheng,Gao Xiao-Yong,Gu Jin-Hua,Lu Jing-Xiao.Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays[J].Acta Physica Sinica,2015,64(24):248801-248801.
Authors:Ding Dong  Yang Shi-E  Chen Yong-Sheng  Gao Xiao-Yong  Gu Jin-Hua  Lu Jing-Xiao
Institution:Key Laboratory of Materials Physics of Ministry of Education, School of Physical Engineering, Zhengzhou University, Zhengzhou 450052, China
Abstract:Metal nanoparticles with low cost and high performance have good potential applications in light-trapping of solar cells. In this paper, a three-dimensional model is proposed to simulate the light absorption of microcrystalline silicon (μc-Si:H) thin film solar cells. The effects of spherical and hemispherical Al nanoparticle arrays located on the front surfaces of solar cells are investigated, and the particle radius and array period are optimized by the finite element method. The results show that the optimal Al nanoparticle arrays can enhance broadband absorption in thin film solar cells. For spherical particle arrays, the key parameter that influences light absorption in solar cells is period/radius ratio (P/R) or particle surface coverage. When P/R=4-5, the optimum integrated absorption enhancement (Eabs) is over 20% under AM1.5 illumination compared with the solar cell without nanoparticles. The value of Eabs is small and decreases with the increase of P/R when P/R>5, and Eabs is less than zero when P/R<3 because of the parasitic absorption and backward scattering from the mental nanoparticles. When P=500 nm and R=120 nm, the spectral absorption rate as a function of wavelength shows broadband absorption including four distinct peaks, which are attributed to quadrupole plasmon resonance mode, dipole resonance mode and waveguide mode respectively according to the electric field distribution in the solar cell. For hemispherical particle arrays, the maximum value of Eabs is 24.5%, which is higher than that of the solar cell with optimized spherical particle arrays. This is due to the high coupling efficiencies of the particles, so that most of the scattered light is directly coupled into the substrate. However, the value of Eabs is very sensitive to the hemispherical particle radius. As the radius decreases, the scattering cross-section and scattering efficiency of the particle decrease dramatically. As the radius increases, the dipole plasmon resonance wavelength rapidly shifts towards longer wavelength (red shift). Both of these are detrimental to absorption enhancement of solar cells. Thus we conclude that spherical Al particle arrays are more preferable in actually fabricating the light-trapping of solar cells.
Keywords:Al nanoparticle arrays  surface plasmon  solar cells  light-trapping
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号