首页 | 本学科首页   官方微博 | 高级检索  
     检索      

同心椭圆柱-纳米管结构的双重Fano共振研究
引用本文:张兴坊,刘凤收,闫昕,梁兰菊,韦德全.同心椭圆柱-纳米管结构的双重Fano共振研究[J].物理学报,2019,68(6):67301-067301.
作者姓名:张兴坊  刘凤收  闫昕  梁兰菊  韦德全
作者单位:1. 枣庄学院光电工程学院, 枣庄 277160; 2. 山东省光电信息处理与显示实验室, 枣庄 277160
基金项目:国家自然科学基金(批准号:61701434)、山东省自然基金(批准号:ZR2017MF005,ZR2018LF001)、山东省高等学校科技计划(批准号:J17KA087)和枣庄市光电信息功能材料与微纳器件重点实验室资助的课题.
摘    要:提出了一种同心椭圆柱-纳米管复合结构,该结构由金纳米管中内嵌椭圆形金柱构成,利用时域有限差分法分析了尺寸参数、周围环境及纳米管内核材料对该结构光学性质的影响.结果表明,调节椭圆柱芯的旋转角度可产生双重偶极-偶极Fano共振,其主要是由椭圆柱芯的纵向或横向偶极共振模式与纳米管的偶极成键和反成键模式杂化形成的超辐射成键模式和亚辐射成键模式之间的相互作用产生的,且共振特性可通过调节复合结构的尺寸参数控制,随椭圆柱长轴或短轴的增大而红移,随纳米管外径的增大或整体尺寸的减小而蓝移,当纳米管内径增大时高频Fano共振随着红移,而低频Fano共振先蓝移再红移,同时其对外界环境的变化不敏感,但对纳米管内核材料变化有着较好的响应.利用等离激元杂化理论对该现象进行了解释.这些结果可为构造其他类型的多波段Fano共振二维或三维纳米结构提供一种新的方式.

关 键 词:局域表面等离激元  Fano共振  纳米管  时域有限差分法
收稿时间:2018-12-22

Double Fano resonance in gold nanotube embedded with a concentric elliptical cylinder
Zhang Xing-Fang,Liu Feng-Shou,Yan Xin,Liang Lan-Ju,Wei De-Quan.Double Fano resonance in gold nanotube embedded with a concentric elliptical cylinder[J].Acta Physica Sinica,2019,68(6):67301-067301.
Authors:Zhang Xing-Fang  Liu Feng-Shou  Yan Xin  Liang Lan-Ju  Wei De-Quan
Institution:1. School of Opt-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, China; 2. Laboratory of Optoelectronic Information Processing and Display of Shandong, Zaozhuang 277160, China
Abstract:Optical properties of the concentric composite nanostructure composed of gold nanotube around the center gold elliptical core are investigated based on the finite difference time domain method. According to the simulated absorption and scattering spectra, electric field distributions and charge distributions, we can generate double dipole-dipole Fano resonances by adjusting the angle between the elliptical cylinder core and the linearly polarized excitation light, which is due mainly to the interference between the subradiant dipole mode and the superradiant dipole mode. The narrow, low-energy subradiant mode originates from the symmetric hybrization between the longitudinal or transverse dipole mode of the elliptical cylinder core and the dipole bonding mode of the nanotube, and the broad, high-energy superradiant mode originates from the symmetric hybrization between the core's dipole mode and the nanotube's dipole antibonding mode. Moreover, the intensities and spectral positions of the two Fano resonances can be manipulated by modifying the geometric parameters of the composite structure. By increasing the semiminor axis of elliptical core, the high-energy Fano resonance red-shifts faster than the low-energy Fano resonance due to the increase of the interaction coupling between the transverse dipole mode of the core and the dipole mode of the nanotube, and becomes weaker in the scattering spectrum because of the reduced radiation intensity of the superradiant dipole mode. When the semimajor axis is changed, a similar phenomenon occurs in the low-energy Fano resonance. In addition, the two Fano resonances red-shift when outer radius of the nanotube increases, but the shift of low-frequency and high-frequency Fano resonance are inconsistent as the inner radius of the nanotube changes. The high-frequency Fano resonance red-shifts monotonically while the low-frequency Fano resonance first blue-shifts and then red-shifts with the increase of inner radius of nanotube because the red shift of the dipole bonding nanotube mode competes with the spectral shifts induced by the diminishing hybridization between elliptical core and nanotube mode. It can also be concluded that the dipole-dipole Fano resonances become apparent and higher order Fano resonance occurs when the composite nanostructure is scaled to a larger size due to the increased radiative damping. With the core and nanotube size fixed, Fano resonance is insensitive to the change of the external environment, but has a good response to the nuclear material of the nanotube.
Keywords:surface plasmon polariton  Fano resonance  nanotube  finite difference time domain
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号