首页 | 本学科首页   官方微博 | 高级检索  
     

硒化锑薄膜太阳电池的模拟与结构优化研究
引用本文:曹宇,祝新运,陈翰博,王长刚,张鑫童,侯秉东,申明仁,周静. 硒化锑薄膜太阳电池的模拟与结构优化研究[J]. 物理学报, 2018, 67(24): 247301-247301. DOI: 10.7498/aps.67.20181745
作者姓名:曹宇  祝新运  陈翰博  王长刚  张鑫童  侯秉东  申明仁  周静
作者单位:1. 现代电力系统仿真控制与绿色电能新技术教育部重点实验室(东北电力大学), 吉林 132012;2. 东北电力大学化学工程学院, 吉林 132012
基金项目:国家自然科学基金(批准号:51772049)、吉林省科技发展计划(批准号:20170520159JH)和吉林省教育厅"十三五"科学技术研究项目(批准号:JJKH20190705KJ)资助的课题.
摘    要:采用wx-AMPS模拟软件对硒化锑(Sb_2Se_3)薄膜太阳电池进行建模仿真,将CdS, ZnO和Sn02的模型应用到Sb_2Se_3太阳电池的电子传输层中.结果显示,应用CdS和ZnO都能实现较高的器件性能,并发现电子传输层电子亲和势(Xe-ETL)的变化能够调节Sb_2Se_3太阳电池内部的电场分布,是影响器件性能的关键参数之一.过高或者过低的Xe-ETL都会使电池的填充因子降低,导致电池性能劣化.当Xe-ETL为4.2eV时,厚度为0.6μm的Sb_2Se_3太阳电池取得了最优的7.87%的转换效率.应用优化好的器件模型,在不考虑Sb_2Se_3层缺陷态的理想情况下,厚度为3μm的Sb_2Se_3太阳电池的转换效率可以达到16.55%(短路电流密度J_(SC)=34.88 mA/cm~2、开路电压V_(OC)=0.59 V、填充因子FF=80.40%).以上模拟结果表明,Sb_2Se_3薄膜太阳电池在简单的器件结构下就能够获得优异的光电性能,具有较高的应用潜力.

关 键 词:硒化锑  电子传输层  薄膜太阳电池  wx-AMPS
收稿时间:2018-09-21

Simulation and optimal design of antimony selenide thin film solar cells
Cao Yu,Zhu Xin-Yun,Chen Han-Bo,Wang Chang-Gang,Zhang Xin-Tong,Hou Bing-Dong,Shen Ming-Ren,Zhou Jing. Simulation and optimal design of antimony selenide thin film solar cells[J]. Acta Physica Sinica, 2018, 67(24): 247301-247301. DOI: 10.7498/aps.67.20181745
Authors:Cao Yu  Zhu Xin-Yun  Chen Han-Bo  Wang Chang-Gang  Zhang Xin-Tong  Hou Bing-Dong  Shen Ming-Ren  Zhou Jing
Affiliation:1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education(Northeast Electric Power University), Jilin 132012, China;2. School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
Abstract:In this paper, the wx-AMPS simulation software is used to model and simulate the antimony selenide (Sb2Se3) thin film solar cells. Three different electron transport layer models (CdS, ZnO and SnO2) are applied to the Sb2Se3 solar cells, and the conversion efficiencies of which are obtained to be 7.35%, 7.48% and 6.62% respectively. It can be seen that the application of CdS and ZnO can achieve a better device performance. Then, the electric affinity of the electron transport layer (χe-ETL) is adjusted from 3.8 eV to 4.8 eV to study the effect of the energy band structure change on the solar cell performance. The results show that the conversion efficiency of the Sb2Se3 solar cell first increases and then decreases with the increase of the χe-ETL. The lower χe-ETL creates a barrier at the interface between the electron transport layer and the Sb2Se3 layer, which can be considered as a high resistance layer, resulting in the increase of series resistance. On the other hand, when the χe-ETL is higher than 4.6 eV, the electric field of the electron transport layer can be reversed, leading to the accumulation of the photon-generated carriers at the interface between the transparent conductive film and the electron transport layer, which could also hinder the carrier transport and increase the series resistance. At the same time, the electric field of Sb2Se3 layer becomes weak with the value of χe-ETL increasing according to the band structure of the Sb2Se3 solar cell, leading to the increase of the carriers' recombination and the reduction of the cell parallel resistance. As a result, too high or too low χe-ETL can lower the FF value and cause the device performance to degrade. Thus, to maintain high device performance, from 4.0 eV to 4.4 eV is a suitable range for the χe-ETL of the Sb2Se3 solar cell. Moreover, based on the optimization of the χe-ETL, the enhancement of the Sb2Se3 layer material quality can further improve the solar cell performance. In the case of removing the defect states of the Sb2Se3 layer, the conversion efficiency of the Sb2Se3 solar cell with a thickness of 0.6 μm is significantly increased from 7.87% to 12.15%. Further increasing the thickness of the solar cell to 3 μm, the conversion efficiency can be as high as 16.55% (Jsc=34.88 mA/cm2, Voc=0.59 V, FF=80.40%). The simulation results show that the Sb2Se3 thin film solar cells can obtain excellent performance with simple device structure and have many potential applications.
Keywords:antimony selenide  electron transport layer  thin film solar cell  wx-AMPS
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号