首页 | 本学科首页   官方微博 | 高级检索  
     

基于类表面等离子体激元的矩形金属光栅色散特性的研究
引用本文:刘永强,孔令宝,杜朝海,刘濮鲲. 基于类表面等离子体激元的矩形金属光栅色散特性的研究[J]. 物理学报, 2015, 64(17): 174102-174102. DOI: 10.7498/aps.64.174102
作者姓名:刘永强  孔令宝  杜朝海  刘濮鲲
作者单位:北京大学信息科学技术学院, 北京 100871
基金项目:国家自然科学基金(批准号: 61471007)和中国博士后科学基金(批准号: 2014M560019)资助的课题.
摘    要:等离子体激元(surface plasmon polaritons, SPP)因其独特的光学和物理特性, 使其具有诸如透射增强和局域共振等一系列新颖现象, 已成为当前国内外学者研究的热点. 本文对基于类表面等离子体激元(Spoof Surface Plasmons, SSP)的矩形金属光栅色散特性和模式分布进行了研究. 利用本征函数法并结合场匹配条件, 获得了矩形栅表面SSP的场表达式、色散关系和模式分布, 并通过电磁仿真进行了验证. 在此基础上分析了矩形栅各参数对SSP色散及模式分布的影响, 研究结果表明: 由本征函数法获得的SSP色散特性与仿真结果基本符合; 增大金属栅高度或减小排列周期能减小SSP的相速度; 而增大金属栅周期占空比能在一定程度上拓展SSP与电子束互作用的带宽; 改变金属盖板高度对慢波SSP色散模式基本没有影响; 减小金属栅侧面宽度能增大模式之间的间隔, 从而能有效避免模式竞争的发生. 本文对基于SSP的矩形金属光栅色散特性的研究将为进一步研究SSP与电子束的相互作用, 形成高效、宽带的新型太赫兹源奠定良好的理论基础.

关 键 词:类表面等离子体激元  矩形光栅  色散特性  模式竞争
收稿时间:2015-01-23

Analysis on dispersion characteristics of rectangular metal grating based on spoof surface plasmons
Liu Yong-Qiang,Kong Ling-Bao,Du Chao-Hai,Liu Pu-Kun. Analysis on dispersion characteristics of rectangular metal grating based on spoof surface plasmons[J]. Acta Physica Sinica, 2015, 64(17): 174102-174102. DOI: 10.7498/aps.64.174102
Authors:Liu Yong-Qiang  Kong Ling-Bao  Du Chao-Hai  Liu Pu-Kun
Affiliation:School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
Abstract:The unique optical and physical properties of surface plasmon polaritons (SPP) has brought about a series of novel phenomena such as SPP-enhanced transmission, local resonance, etc., and SPP has become a research hotspot around the world. In this paper, the dispersion characteristics and modes of rectangular metal grating based on spoof surface plasmons (SSP) are studied theoretically and numerically. The electromagnetic fields of SSP which are below and above the grating surface are presented using eigenmode expansion method and under periodic boundary conditions, besides the fact that the SSP dispersion relations are obtained by matching the boundary conditions of electromagnetic fields both for rectangular metal grating with roofed metal plate and that without roofed metal plate. Results for these two different cases are given according to numerical calculation and it is found that the roofed metal plate can introduce an additional fast wave mode which is beyond the light line in the dispersion diagram. And the results of analytical SSP dispersion are verified by electromagnetic simulations based on the finite difference method and finite integration method. The dependence of the dispersion characteristics and mode distributions on various parameters of metal grating is studied theoretically. It is shown that the dispersion relations obtained by eigenmode expansion method agree well with the results of electromagnetic simulations. The phase velocity of SSP on the grating surface can be decreased by increasing metal grating depth or decreasing grating period. The bandwidth of electron beam-SSP interaction can be extended by increasing grating period ratio. The influence of the distance between the roofed metal plate and the grating surface on the SSP dispersion is studied and is found that the role of roofed metal plate is insensitive to the slow wave SSP mode. The SSP dispersion and modes for the 3-D metal grating which are extended from the above 2-D SSP dispersion are also given. The SSP symmetric modes and anti-symmetric modes manifest themself alternately in the dispersion diagram on the 3-D grating surface. Compared with the 2-D SSP bound mode without roofed metal plate, it is found that in the 3-D grating structure the slow wave SSP modes and fast wave SSP modes coexist. The 3-D SSP mode with various grating lateral width is studied, and the competition and degeneracy of modes are analyzed particularly. The SSP mode intervals can be enlarged by decreasing the lateral width of the grating, which is optimum for avoiding mode competitions. Studies on dispersion and modes of the 2-D and 3-D metal grating structures based on SSP will lay the foundations for further studies of electron beam-SSP interaction, and development of the novel terahertz vacuum electronic source with high-efficiency and wide-bandwidth.
Keywords:spoof surface plasmons  rectangular grating  dispersion characteristic  mode competition
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号