首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Exact solution of two-species ballistic annihilation with general pair-reaction probability
Authors:M J E Richardson
Institution:(1) Department of Theoretical Physics, University of Oxford, OX1 3NP Oxford, UK
Abstract:The reaction processA + B → ∅ is modeled for ballistic reactants on an infinite line with particle velocitiesυ A =c andυ B = -c and initially segregated conditions, i.e., allA particles to the left and allB particles to the right of the origin. Previous models of ballistic annihilation have particles that always react on contact, i.e., pair-reaction probabilityp = 1. The evolutions of such systems are wholly determined by the initial distributions of particles and therefore do not have a stochastic dynamics. However, in this paper the generalization is made to p< 1, allowing particles to pass through each other without necessarily reacting. In this way, theA andB particle domains overlap to form a fluctuating, finitesized reaction zone where the product ∅ is created. Fluctuations are also included in the currents ofA andB particles entering the overlap region, thereby inducing a stochastic motion of the reaction zone as a whole. These two types of fluctuations, in the reactions and particle currents, are characterised by theintrinsic reaction rate, seen in a single system, and theextrinsic reaction rate, seen in an average over many systems. The intrinsic and extrinsic behaviors are examined and compared to the case of isotropically diffusing reactants
Keywords:Ballistic annihilation  reaction process  reaction zone  nonequilibrium Statistical mechanics  exactly solved model
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号