首页 | 本学科首页   官方微博 | 高级检索  
     检索      


p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solution
Authors:Hongye Zhang  Yun Xie  Zhimin Liu  Ranting Tao  Zhenyu Sun  Kunlun Ding  Guimin An
Institution:aBeijing National Laboratory of Molecular Science, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
Abstract:Monodispersed TiO2 hybrid microspheres were prepared via the hydrolysis of titanium isopropoxide (TTIP) in ethanol solution containing p-aminophenylacetic acid (APA). The effects of the APA:TTIP molar ratio, water content, reaction time and reaction temperature on the morphology of the resultant spheres were investigated. The products were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. It was demonstrated that the diameters of the resultant TiO2 spheres could be tuned in the range of 380–800 nm by changing the APA:TTIP molar ratio (1:3 to 3:1) and water content (1–3 v/v%) in the reaction medium, and that increasing the APA:TTIP molar ratio led to larger TiO2 hybrid spheres while increasing the water content decreased their size. The loading content of APA in the hybrid spheres could reach 20 wt.% as they were prepared with the APA:TTIP ratio of 3:1. The possible formation mechanism of the hybrid spheres was also investigated. It was found that APA slowed down the hydrolysis rate of the titanium precursor so that resulted in the formation of the TiO2 spheres. In addition, the APA present in TiO2 spheres acted as a reducing agent to in situ convert HAuCl4 into metallic Au on the surface of the TiO2 spheres. The catalytic activity of the resultant Au/APA–TiO2 composite was examined using transfer hydrogenation of phenylacetone with 2-propanol, and it was indicated that the catalyst displayed high efficiency for this reaction.
Keywords:TiO2  Hybrid  Spheres  Synthesis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号