首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Correlation between jerky flow and jerky dynamics in a nanoscratch on a metallic glass film
Abstract:Chaos has been well understood in dynamic system, however, how the chaotic behavior occur in jerky flow in material, is still not clear, and is lack of specific chaotic attractor. Here the jerky evolution of lateral force and the stair-like fluctuation of lateral displacement are observed for Ni62 Nb38(at.%) metallic glass film during nanoscratch process. This jerky flow is investigated by using the largest Lyapunov exponent, Kolmogorov entropy and fractal dimension, and chaotic behavior of lateral force-time and normal displacement-lateral displacement sequences is verified. In addition to time series analysis, it is found that jerk equation can be used to describe the jerky flow of the metallic-glass film during nanoscratch. More importantly, unambiguous chaotic attractor is presented by jerky dynamics using "jerk"-singularities, namely the total change rate of lateral force relative to scratch time. These reveal an inner connection between jerky flow and jerky dynamics in nanoscratch of a metallic-glass film.
Keywords:
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号