首页 | 本学科首页   官方微博 | 高级检索  
     


OptiDock: virtual HTS of combinatorial libraries by efficient sampling of binding modes in product space
Authors:Sprous Dennis G  Lowis David R  Leonard Joseph M  Heritage Trevor  Burkett Steven N  Baker David S  Clark Robert D
Affiliation:Tripos Inc., 1699 South Hanley Road, St. Louis, Missouri 63144, USA.
Abstract:
Products from combinatorial libraries generally share a common core structure that can be exploited to improve the efficiency of virtual high-throughput screening (vHTS). In general, it is more efficient to find a method that scales with the total number of reagents (Sigma growth) rather with the number of products (Pi growth). The OptiDock methodology described herein entails selecting a diverse but representative subset of compounds that span the structural space encompassed by the full library. These compounds are docked individually using the FlexX program (Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. J. Mol. Biol. 1995, 251, 470-489) to define distinct docking modes in terms of reference placements for combinatorial core atoms. Thereafter, substituents in R-cores (consisting of the core structure substituted at a single variation site) are docked, keeping the core atoms fixed at the coordinates dictated by each reference placement. Interaction energies are calculated for each docked R-core with respect to the target protein, and energies for whole compounds are calculated by finding the reference core placement for which the sum of corresponding R-core energies is most negative. The use of diverse whole compounds to define binding modes is a key advantage of the protocol over other combinatorial docking programs. As a result, OptiDock returns better-scoring conformers than does serially applied FlexX. OptiDock is also better able to find a viable docked pose for each library member than are other combinatorial approaches.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号