首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theory of light scattering from a system of interacting Brownian particles
Authors:W Hess  R Klein
Institution:Fachbereich Physik, Universität Konstanz, 7750 Konstanz, Germany
Abstract:Starting from a N-particle diffusion equation for a system of N interacting spherical Brownian particles, a non-linear transport equation for concentration fluctuations δc(r, t) of the particles is derived. This dynamic equation is transformed into a hierarchy of equations for retarded propagators of increasing numbers of concentration fluctuations. A cluster expansion to lowest order in the average concentration results in a set of two coupled equations. The spectrum of light scattered by the interacting particles is in general not a Lorentzian, due to the non-linear term in the transport equation. For small scattering wave vectors k the width is D(ω)k2, where ω is the transferred frequency. It is shown that D(0) = De, the effective diffusion coefficient. For a hardcore interaction potential the spectrum is Lorentzian and it is found that De = D0(1 + φ), where D0 is the diffusion constant for independent particles and φ the volume concentration of Brownian particles.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号