首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fourier transform infrared studies of cyclohexane and benzene adsorbed on Pt/Al2O3: Evidence for π- and σ-bonded chemisorbed species
Authors:David M Haaland
Abstract:Fourier transform infrared spectroscopy has been applied to the study of cyclohexane adsorbed on Al2O3 and Pt/Al2O3 surfaces. Earlier studies of benzene on these same materials have also been extended to include benzene adsorbed on a Pt/Al2O3 surface which contains structured carbon residues. The data provide indirect evidence for the formation of a carbon residue on Pt/Al2O3 which retains the six-membered cyclic structure of the parent adsorbates. The carbon residue can be formed upon vacuum heating of the parent C6 ring molecules chemiorbed on Pt/Al2O3. There is spectroscopic evidence that cyclohexane dehydrogenates on Pt/Al2O3 at 300 K to form two different chemisorbed species; a π-bonded benzene and a dissociated σ-bonded benzene. These two chemisorbed species have CH stretching vibrations centered at 3030 and 2947 cm?1, respectively. Benzene added to a clean catalyst surface forms only a π-bonded benzene. However, benzene added to Pt/Al2O3 with ordered carbon residues forms both π- and σ-bonded benzenes. The addition of H2 at 300 K to any of the π- or σ-bonded benzenes or to the carbon residue results in the formation of cyclohexane physisorbed on the catalyst. The absence of CH3 groups upon hydrogenation suggests the lack of CC bond breaking during adsorption or hydrogenation. Simultaneous infrared and thermal desorption studies on chemisorbed deuterated benzene (from C6D12) indicate that the a-bonded species exchange H from the surface OH groups of the alumina support more readily than does the π-bonded benzene. In addition to hydrogen exchange with the support, thermal desorption experiments indicate the oxidation of a portion of the chemisorbed hydrocarbons and/or carbon residue by oxygen from the alumina support. Therefore, the support is capable of playing a direct role in reactions occurring on the catalyst surface.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号