首页 | 本学科首页   官方微博 | 高级检索  
     


The chemisorption of N2 on the (110) surface of iridium
Authors:D.E. Ibbotson  T.S. Wittrig  W.H. Weinberg
Affiliation:Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
Abstract:The molecular chemisorption of N2 on the reconstructed Ir(110)-(1 × 2) surface has been studied with thermal desorption mass spectrometry, XPS, UPS, AES, LEED and the co-adsorption of N2 with hydrogen. Photoelectron spectroscopy shows molecular levels of N2 at 8.0 (5σ + 1π) and 11.8 (4σ) eV in the valence band and at 399.2 eV with a satellite at 404.2 eV in the N(1s) region, where the binding energies are referenced to the Ir Fermi level. The kinetics of adsorption and desorption show that both precursor kinetics and interadsorbate interactions are important for this chemisorption system. Adsorption occurs with a constant probability of adsorption of unity up to saturation coverage (4.8 × 1014 cm?2), and the thermal desorption spectra give rise to two peaks. The activation energy for desorption varies between 8.5 and 6.0 kcal mole?1 at low and high coverages, respectively. Results of the co-adsorption of N2 and hydrogen indicate that adsorbed N2 resides in the missing-row troughs on the reconstructed surface. Nitrogen is displaced by hydrogen, and the most tightly bound state of hydrogen blocks virtually all N2 adsorption. A p1g1(2 × 2) LEED pattern is associated with a saturated overlayer of adsorbed N2 on Ir(110)-(1 × 2).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号