首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetic circular dichroism of porphyrins containing M = Ca, Ni, and Zn. A computational study based on time-dependent density functional theory
Authors:Peralta G A  Seth Michael  Ziegler Tom
Institution:Department of Chemistry, University of Calgary, University Drive 2500, Calgary, Alberta, Canada.
Abstract:A theoretical study is presented on the magnetic circular dichroism (MCD) exhibited by the porphyrin complexes MP (M = Mg,Ni,Zn), MTPP (M = Mg,Ni,Zn), and NiOEP, where P = porphyrin, TPP = tetraphenylporphyrin, and OEP = octaethylporphyrin. The study makes use of a newly implemented method for the calculation of A and B terms from the theory of MCD and is based on time-dependent density functional theory (TD-DFT). It is shown that the MCD spectrum is dominated by a single positive A term in the Q-band region in agreement with experiment where available. The band can be fully explained as the first transition in Gouterman's four-orbital model for the type of porphyrins studied here. For the Soret band, the experimental MCD spectrum appears as a single positive A term. This is also what is found computationally for NiP and NiTPP, where the second transition in Gouterman's four-orbital model give rise to a positive A term. However, for the remaining systems, the simulated MCD spectrum is actually due to two B terms that have the appearance of one positive pseudo A term. The two B terms appear because the second Gouterman state is coupled strongly to a second excited state (b(2u) --> 2e(g)) of nearly the same energy by the external magnetic field.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号