首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Amphiphile bilayer films from DPPC: bilayer lipid membranes and Newton black films
Authors:Dotchi Exerowa  Roumen Todorov and Ljubomir Nikolov
Institution:

Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, Sofia 1113, Bulgaria

Abstract:Amphiphile bilayer films are obtained from 1,2 dipalmitoyl-glycero-3-phosphocholine (DPPC): bilayer lipid membranes (BLM) and Newton black films (NBF), through thinning of the respective thin liquid films, thus allowing for a very precise determination of the moment of their formation. Stability (or rupture) and formation of BLM and NBF are considered from a unified point of view with the microscopic theory of Kashchiev–Exerowa J. Colloid Interface Sci., 77 (1980) 501–511], based on the formation of nanoscopic holes in them. BLM and NBF are obtained and studied with the microinterferometric method of Scheludko–Exerowa in its contemporary version. The equivalent thickness of both BLM (in benzene solution between two water phases with 0.1 M NaCl) and NBF in aqueous DPPC solution (in the presence of 0.1 M NaCl) is determined as being hw = 7.0 nm for BLM and hw = 7.8 nm for NBF. By means of the dependences: BLM lifetime versus DPPC concentration and probability for BLM formation versus DPPC concentration, it is established that there exist metastable BLM and stable NBF. The good fit between the experimental results of τ(C) dependence and theory in the case of BLM allow to determine the three constants: pre-exponential factor A = 1.5 × 10−3 s, related to the process kinetics; constant B = 20.2 ± 0.2, related to the specific hole energy γ = 1.7 × 10−11 J/m and the equilibrium concentration Ce = 6 × 10−4 ± 7.2 × 10−6 m/l. The specific hole linear energy γ = 1.7 × 10−11 J/m determined as well as the binding energy Q between first neighbor molecules in the bilayers Q = 1.48 × 10−19 J (36 kT) are lower than the ones determined for DPPC foam bilayer in gel state γ = 9.1 × 10−11 J/m and Q = 55 kT. This means that interaction is weaker in the case of BLM. The critical concentration Cc at which bilayer formation starts is: for BLM Cc = 30 μg/ml and for NBF Cc = 70 μg/ml. This concentration characterizes quantitatively the formation of the amphiphile bilayer and is a very useful parameter that can be used for various purposes.
Keywords:Amphiphile bilayer  DPPC bilayers  Newton black film  BLM  Binding energy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号