首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aggregation-induced amplified quenching in conjugated polyelectrolytes with interrupted conjugation
Authors:Xie Dongping  Parthasarathy Anand  Schanze Kirk S
Institution:Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, USA.
Abstract:A pair of anionic conjugated polyelectrolytes that contain three-ring (phenylene ethynylene) units linked by a single -CH(2)- or -O- tether (P1 and P2, respectively) are studied. The linkers serve to interrupt the π conjugation along the polymer backbone. Fluorescence spectroscopy reveals that P2 forms a fluorescent aggregate in methanol and water; however, the fluorescence of P1 is much weaker in water, and P1 exhibits only weak aggregate fluorescence. Fluorescence quenching of the polymers was examined using methyl viologen (MV(2+)) as a cationic quencher. P1 shows only a weak amplified quenching effect, with a Stern-Volmer quenching constant of K(SV) ≈ 6 × 10(5) M(-1) in methanol. Interestingly, for P2 in methanol, the aggregate emission is strongly quenched with K(SV) ≈ 5 × 10(6) M(-1), which is comparable to the highest quenching efficiency observed for fully π-conjugated polyelectrolytes. By contrast, the monomer emission is quenched much less efficiently, with K(SV) ≈ 2 × 10(5) M(-1). The results are explained by a model in which -O- linked polymer P2 is able to fold into a helical conformation in solution, which facilitates the formation of extended π-stacked aggregates allowing long-distance exciton transport.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号