首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Unusual open chain quinolinyl peroxol and its alcohol counterpart obtained through a modified Skraup–Doebner–Von Miller quinoline synthesis: theoretical studies and complete 1H‐ and 13C‐NMR assignments
Authors:Jean Fotie  Hilaire V Kemami Wangun  Katelyn Dreux  Thomas Sommerfeld  Jacob Pittman
Institution:1. Department of Chemistry and Physics, Southeastern Louisiana University, , Hammond, LA, USA;2. Harbor Branch Oceanographic Institute, Centre of Marine Biomedical and Biotechnology Research, Florida Atlantic University, , Fort Pierce, FL, USA
Abstract:Because of their extreme instability, it is generally difficult to synthesize and fully characterize open chain peroxides, also known as peroxols. In our attempt to investigate the mechanism of the Skraup–Doebner–Von Miller quinoline synthesis, we were able to obtain an unusual open chain peroxy‐quinoline, namely, 4‐(8‐ethoxy‐2,3‐dihydro‐1H‐cyclopentac]quinolin‐4‐yl)butane‐1‐peroxol (1), and its alcohol counterpart, namely 4‐(8‐ethoxy‐2,3‐dihydro‐1H‐cyclopentac]quinolin‐4‐yl)butan‐1‐ol (2) obtained as a side product during the same reaction. Although structurally similar, these two compounds appeared to display some very distinct physical and spectroscopic characteristics. This work reports detailed NMR studies and full 1H and 13 C NMR assignments for these two compounds. These assignments are based upon the analysis of the NMR spectra of these compounds including 1H, 13 C, COSY, gHSQC and gHMBC. The effect of the peroxide functional group on the chemical shift of neighboring carbons and protons was also investigated by comparing the NMR data of these two compounds. Furthermore, the effects of potential hydrogen bondings in 1, 2, and possible 1–1 dimer, 2–2 dimer and in prototypical model systems, as well as the stability of these compounds, were investigated computationally. The computed dissociation energies and NMR data support the interpretation of the experimental data. Copyright © 2012 John Wiley & Sons, Ltd.
Keywords:NMR  1H and 13C NMR  HSQC  HMBC  4‐(8‐ethoxy‐2  3‐dihydro‐1H‐cyclopenta[c]quinolin‐4‐yl)butane‐1‐peroxol  4‐(8‐ethoxy‐2  3‐dihydro‐1H‐cyclopenta[c]quinolin‐4‐yl)butan‐1‐ol  density functional calculations  ab initio calculations  hydrogen bonds
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号