Stereospecificity of 1H, 13C and 15N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on 1H chemical shifts |
| |
Authors: | Andrei V. Afonin Dmitry V. Pavlov Igor A. Ushakov Natalia A. Keiko |
| |
Affiliation: | Institute of Chemistry, Siberian Branch of the Russian Academy of Science, , 664033 Irkutsk, Russia |
| |
Abstract: | In the 13C NMR spectra of methylglyoxal bisdimethylhydrazone, the 13C‐5 signal is shifted to higher frequencies, while the 13C‐6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the 1H‐6 chemical shift and 1J(C‐6,H‐6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the –CH═N– bond does not change. This paradox can be rationalized by the C–H?N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum‐chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ(1H‐6) and 1J(C‐6,H‐6) parameters. The effect of the C–H?N hydrogen bond on the 1H shielding and one‐bond 13C–1H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The 1H, 13C and 15N chemical shifts of the 2‐ and 8‐(CH3)2N groups attached to the –C(CH3)═N– and –CH═N– moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8‐(CH3)2N group conjugate effectively with the π‐framework, and the 2‐(CH3)2N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N‐2– and N‐8– nitrogen lone pairs to the π‐framework varies, which affects the 1H, 13C and 15N shieldings. Copyright © 2012 John Wiley & Sons, Ltd. |
| |
Keywords: | NMR 1H NMR 13C NMR 15N NMR shielding constants stereospecificity GIAO calculations configurational analysis methylglyoxal bisdimethylhydrazone |
|
|