首页 | 本学科首页   官方微博 | 高级检索  
     


The use of headspace solid phase microextraction for the characterization of volatile compounds in olive oil matrices
Authors:Ribeiro Laila H  Costa Freitas Ana M  Gomes da Silva Marco D R
Affiliation:a REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
b Departamento de Fitotecnia, Instituto de Ciências Agrárias e Mediterrânicas-ICAM, Universidade de Évora, Apt 94 7002-554 Évora, Portugal
Abstract:Two different fibre coatings, for solid phase microextraction (SPME) sampling, poly(dimethylsiloxane) (PDMS) and poly(acrylate) (PA), were studied in order to test, for olive oil matrixes, two mathematical models that relate the directly proportional relationship between the amount of analyte absorbed by a SPME fibre and its initial concentration in the sample matrices. Although the PA fibre was able to absorb higher amounts of compounds from the olive oil sample, the equilibrium was reached later then with the PDMS fibre. In both cases, the amount of analyte present affected the time profile or the equilibrium time in two of the concentrations studied, 0.256 μL/kg, 2.56 μL/kg and for 2-ethylfuran, pentan-3-one, pent-1-en-3-one, hexanal, trans,trans-non-2,4-dienal and in the four concentrations studied, 0.256 μL/kg, 2.56 μL/kg, 6.25 μL/kg and 400 μL/kg, for 4-methyl-pent-3-en-2-one, 2-methylbutan-1-ol, methoxybenzene, hexan-1-ol, cis-hex-3-en-1-ol, trans-hex-2-en-1-ol, 2-ethyl-hexan-1-ol and trans,trans-dec-2,4-dienal. Comparing the mathematical models of both fibres, the PA-coated fibre showed direct proportionality between the initial concentration and amount extracted, that allows the possibility of relative quantification in a non-equilibrium state in non-aqueous media. The same was not observed for the PDMS fibre.
Keywords:Olive oil   Volatile compounds   Headspace   Solid phase microextraction   Kinetic absorption curves
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号