首页 | 本学科首页   官方微博 | 高级检索  
     


The solubility and isotopic fractionation of gases in dilute aqueous solution. IIa. solubilities of the noble gases
Authors:Daniel Krause Jr.  Bruce B. Benson
Affiliation:(1) Department of Physics, Amherst College, 01002 Amherst, MA
Abstract:A method for the analysis of precise gas solubility data is presented and applied to new determinations of the Henry constant, k2, for He, Ne, Ar, Kr, and Xe. The values of k2 are fitted to the same sets of temperature functions which we have tried for oxygen. Our previously proposed power series in 1/T, ln(k2/P)=a0+a1/T+a2/T2 (Mark I), gives the best 3-term fit within the temperature range 0–60°C. For use over the full range to the critical temperature of water, we have discovered a new function given by (T*)2ln(k2/P)=A0(T*)2+A1(1-T*)1/3+A2(1-T*)2/3(Mark II), where T*equivT/Tc1. It fits our data from 0–60°C nearly as well as Mark I; it fits high temperature data from other sources; and at the critical temperature of water it satisfies theoretical requirements. Expansion of Mark II reveals the relationship between Mark II and Mark I and leads to a 4-term smoothing function, ln(k2/P)=a–2(T*)–2+a–1(T*)–1+a0+a1T* (Mark III), which we believe gives the best values only for the 0–60°C range. Mark III is used to calculate values for
$$Delta bar G^theta  ,Delta bar H^theta  ,Delta bar S^theta  $$
, and
$$Delta bar C^theta  $$
, 0–60°C, and a procedure is empolyed to estimate the errors. Agreement is excellent between these results and those obtained from precise microcalorimetric measurements made by others. With the inclusion of pressure correction terms, Mark II yields the four thermodynamic function changes for use at high temperatures. With increasing temperature, these changes suddenly turn upward toward plus infinity as Tc1 is approached. Essentially direct determinations of
$$Delta bar C^theta  $$
for argon by other workers are in excellent agreement with our results. The symmetrical activity coefficient at infinite dilution, gamma2° is examined and the hypothetical properties of k2 are explored below 0°C. Mark II can be expressed in the reduced form (T*)2ln(k2*)=A1(1-T*)1/3+A2(1-T*)2/3, where k2*apidk2/(pc1phgr2c1). A2 is a very good linear fit to A1, which suggests a characteristic temperature for water at 287.3 K.
Keywords:Henry constant  data analysis  temperature dependence  solution thermodynamics  errors  critical phenomena
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号