Fullerene nanowires: self-assembled structures of a low-molecular-weight organogelator fabricated by the Langmuir-Blodgett method |
| |
Authors: | Tsunashima Ryo Noro Shin-ichiro Akutagawa Tomoyuki Nakamura Takayoshi Kawakami Hiroko Toma Kazunori |
| |
Affiliation: | Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan. |
| |
Abstract: | Fullerene derivative C60TT, which is substituted with the low-molecular-weight organogelator tris(dodecyloxy)benzamide, formed nanowire structures on application of the Langmuir-Blodgett (LB) method. The surface morphology of the C60TT LB film was dependent on the holding time before deposition at a surface pressure of 5 mN m(-1); it changed from a homogeneous monolayer to a bilayer fibrous structure via a fibrous monolayer structure, which was estimated to have dimensions of 1.2 nm in height, 8 nm in width, and 5-10 microm in length. From the structural and spectroscopic data, it is inferred that close packing of the fullerene moiety occurs along with intermolecular hydrogen bonding within the monolayer fibrous structure. The morphological changes in the LB film are explained kinetically by the Avrami theory, based on the decrease in the surface area of the monolayer at the air/water interface. The growth of the quasi-one-dimensional fibrous monolayer structures at holding times from 0 to 0.2 h is considered to be an interface-controlled process, whereas the growth of the quasi-one-dimensional bilayer fibrous structures from 0.2 to 18 h is thought to be a diffusion-controlled process. |
| |
Keywords: | fullerenes gels nanostructures self‐assembly thin films |
本文献已被 PubMed 等数据库收录! |
|