首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diffusion on random lattices
Authors:F Wang  E G D Cohen
Institution:(1) Rockefeller University, 10021 New York, New York;(2) Present address: DCRC Research Park, University of Missouri-Columbia, 65211 Columbia, Missouri
Abstract:We study the motion of a point particle along the bonds of a two-dimensional random lattice, whose sites are randomly occupied with right and left rotators, which scatter the particle according to deterministic scattering rules. We consider both a Poisson (PRL) and a vectorized random lattice (VRL) and fixed as well as flipping scatterers. On both lattices, for fixed scatterers and equal concentrations of right and left rotators the same anomalous diffusion of the particle is obtained as before for the triangular lattice, where the mean square displacement is simt, the diffusion process non-Gaussian, and the particle trajectories exhibit scaling behavior as at a percolation threshold. For unequal concentrations the particle is trapped exponentially rapidly. This system can be considered as an extreme case of the Lorentz lattice gases on regular lattices discussed before or as an example of the motion of a particle along cracks or (grain or cellular) boundaries on a two-dimensional surface.
Keywords:Random lattice  diffusion  critical behavior  hyperscaling  propagation  cellular boundaries
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号