Ignition of low-density polyethylene slabs by a small flame |
| |
Authors: | Ferrers R. S. Clark |
| |
Abstract: | Slabs of low-density polyethylene (LDPE) were exposed to the wake of a lean hydrogen-oxygen flat flame. The ignition delay and initial flame velocity after the ignition were measured at several gas-air equivalence ratios and distances from the igniting flame. When ignition occurred, the surface temperature was far lower than that required for pyrolysis in the absence of oxygen. Small amounts of char formed on the polymer surface during the delay, consistent with the involvement of oxygen in solid-phase preignition processes. Plots of In(delay) versus 1/(absolute temperature) were linear and the activation energy was derived from the Arrhenius equation, 64 ± 10 kJ/mol. Initial rates of flame development decreased with increased separation between the polymer and the igniting flame, but unlike those reported for poly(methyl methacrylate), they were independent of the duration of the preceding delay except when the polymer was very close to the flame. The results are explained by a model in which both the ignition delay and the subsequent rate of flame development depend on the concentration of species associated with the chain-propagation steps of the combustion process. |
| |
Keywords: | |
|
|