Abstract: | Abstract –The 1Ag?→1Bu+ electronic absorption band and the vibronically coupled, C=C stretching Raman lines in the 1Ag? and 21Ag? states were recorded for spheroidene free in nonpolar and polar solvents as well as for spheroidene bound to the LH1 and LH2 complexes of Rhodobacter sphaeroides 2.4.1. The 1Bu+ energy exhibited a linear dependence on R(n) = (n2 - 1)/(n2+ 2) in both nonpolar and polar solvents; the line for polar solvents had a gentler slope and crossed the line for nonpolar solvents at R(n) = 0.3. The above characteristic of polar solvents was ascribed to the electric field generated by fluctuation of the solvent permanent dipoles; it stabilizes the 1Bu+ energy and reduces the polarizability of the solvent. The vibronically coupled, C=C stretching frequencies in the 1Ag? and 21Ag? states [ν(Ag) and [ν(2Ag)] also showed similar dependence on R(n), which is explained in terms of vibronic coupling among the 1Ag?, 21Ag? and 31Ag? states. The environment of spheroidene in the LH2 and LH1 complexes was assessed on the basis of the 1Bu+ energy and the ν(Ag) and [ν(2Ag) frequencies: Spheroidene in the LH2 complex is located in an environment with high polarizability, while spheroidene in the LH1 complex is located in an environment with lower polarizability. |